رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تولید پراکنده برق DG

اختصاصی از رزفایل تولید پراکنده برق DG دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

تولید پراکنده گرایش جدیدی در تولید توان الکتریکی است. این ایده به مصرف کننده های الکتریسیته که الکتریسیته مورد نیازشان را خودشان تولید می‌کنند، این اجازه را می‌دهد که اضافه توان الکتریکی‌شان را به شبکه توان بفرستند.

تولید

بسیاری از کارخانجات، ادارات و خصوصاً بیمارستان‌ها نیاز به منابعی با قابلیت اطمینان بالا برای تولید الکتریسیته و سیستم‌های گرمایی هواساز و آب گرم دارند. برای بالا بردن قابلیت اطمینان منابع تغذیه و کاهش هزینه‌ها، برخی از ادارات و کارخانجات، از تولید ترکیبی یا کارخانجات انرژی کلی استفاده می‌کنند که اغلب از مواد اضافی نظیر آشغال چوب یا گرمای اضافی حاصل از یک فرایند صنعتی، برای تولید الکتریسیته استفاده می‌کنند. در برخی موارد، الکتریسیته از یک سوخت تغذیه شده به صورت محلی مانند گاز طبیعی یا گازوئیل تولید می‌شود و سپس از گرمای اضافی منبع انرژی گرمایی ژنراتور برای فراهم آوردن آب داغ و نیز گرمایش صنعتی استفاده می‌کنند. هنگامی که یک فرایند صنعتی نیازمند مقادیر زیاد گرمایی است که از منابع غیر الکتریکی نظیر سوخت‌های فسیلی یا زیست جرمی تامین می‌شود، استفاده از یک کارخانه تولید ترکیبی مقرون به صرفه است.

مسائل نظارتی و تکنولوژیکی

تاکنون مسایل نظارتی و تکنولوژیکی بدین مفهوم بوده است که الکتریسیته تولید شده توسط مصرف کننده‌های خانگی را نمی‌توان به راحتی و بدون خطر با تغذیه توان ورودی همراه کرد. شرکت‌های الکتریکی بایستی توانایی جداسازی بخش‌های شبکه برق را داشته باشند، وقتی که یک خط از کار می‌افتد، کارگران بایستی از قطع بودن برق قبل از کار روی آن مطمئن باشند. آنها همچنین وقت زیادی را صرف می‌کنند تا کیفیت برق را در شبکه‌شان حفظ کنند. تاسیسات پراکنده برق هم می‌تواند کنترل این موارد را مشکل‌تر کند. با ظهور تجهیزات الکترونیک قدرت با قابلیت اطمینان بالا، نصب تجهیزات تولید ترکیبی حتی با اندازه‌های خانگی، اقتصادی و بی‌خطر شده است. این تاسیسات می‌توانند آب داغ خانگی، الکتریسیته و گرمایش خانگی را تولید کنند و انرژی اضافی را به شرکت برق بفروشند. پیشرفت در الکترونیک موجب ساده شدن دسترسی به مسایل امنیتی و کیفی شرکت‌های الکتریکی شده است. برای برطرف کردن موانع رسیدن به افزایش سطوح تولید پراکنده، تنظیم کننده‌ها می‌توانند توسط تضمین عملکرد تولید‌های متمرکز و پراکنده بر روی یک زمینه با سطح متغیر، اقدام کنند. در ایالات متحده، قانون فدرال از شرکت‌های الکتریکی می‌خواهد که برق را از تولید کنندگان مستقل که تحت پوشش قوانین و بیمه هستند خریداری کنند. تولید پراکنده به سوخت فسیلی محدود نشده است. برخی از کشورها و مناطق در حال حاضر دارای منبع انرژی تجدید پذیر قابل توجهی در توربین‌های بادی و احتراق زیست جرمی هستند. افزایش تولید پراکنده نیازمند تغییر در فن‌آوری مورد نیاز برای مدیریت انتقال و توزیع الکتریسیته است. در این صورت نیاز فزاینده‌ای به اپراتورهای شبکه برای مدیریت شبکه‌ها به صورت فعال به جای غیر فعال وجود خواهد داشت. با افزایش مدیرت فعال، مزایای اضافی برای مصرف کننده‌ها به وجود خواهد آمد که این مزایا به صورت معرفی با حق انتخاب‌های بیشتری به نسبت خدمات تغذیه ی انرژی و رقابت بیشتر خواهد بود. اما به هر حال رفتن به سوی مدیریتی فعال‌تر، می‌تواند مشکل باشد. شبکه‌های توزیع الکتریسیته یک حق انحصار طبیعی هستند و بنابراین بشدت قانونمند شده‌اند تا هزینه زیادتری با کار مصرف کننده‌ها بدست نیاورند. سرمایه گذاری شبکه‌ یک معیار کلیدی برای تعیین هزینه‌هایی است که شبکه می‌تواند به مصرف کننده‌ها بدهد. شبکه‌ها سعی می‌کنند تا مزایای شان را در چارچوب کاری فراهم شده توسط قوانین شان، حداکثر کنند. در حال حاضر چنین قوانینی خیلی مناسب تشویق به انجام رفتارهای ابداعی توسط شبکه‌ها نیستند. به نظر می‌رسد که این امر هم برای توسعه شبکه‌ها و هم برای زیاد شدن سطح تولید پراکنده که به شبکه‌ها اضافه می‌شود، مانع ایجاد کند. اما نشانه‌هایی وجود دارد که مقامات نظارتی در حال آشنا شدن هر چه بیشتر با موانع بالقوه هستند و در حال ارائه قوانین هزینه‌های اتصال و شرایطی برای فعال کردن تولید کننده‌های پراکنده برای شرکت در بازار الکتریسیته هستند. اوفجم، تنظیم کننده گاز و الکتریسیته در بریتانیا، برای اپراتورهایی از شبکه توزیع الکتریسیته (DNOها) که روی تحقیق و توسعه راه‌ حل‌های ابداعی شبکه برای سازگار کردن تولید پراکنده سرمایه گذاری می‌کنند، تسهیلاتی فراهم کرده است.


دانلود با لینک مستقیم


تولید پراکنده برق DG

مقاله در مورد توان مدیریت و مدیریت توان

اختصاصی از رزفایل مقاله در مورد توان مدیریت و مدیریت توان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

توان مدیریت و مدیریت توانسیدعلیرضا طیرانی

در این مقاله سعی در معرفی وشناخت دو اصطلاح مهجور ودرعین حال پر کاربرددر فرهنگ عامیانه مدیریت که تا امروز از کنار آن به سادگی گذشته‌ایم وبه آنها پرداخته نشده است داشته وقصد داریم تعریفی برای آنها ارائه کنیم. هدف از ارائه این نوشتار در گام نخست تعریف توان فرد در جهت انجام اموری است که نظارت،سرپرستی ودر نهایت مدیریت راطلب می‌کند ودر گام بعدی مدیریت واستفاده از توانی است که فرد داراست. توان مدیریت – مدیریت توان: این دو اصطلاح در مدیریت با دو معنای کاملا متفاوت به‌کا ر می‌روند ولی درعین حال مکمل یکدیگرند، به بیان دیگر توان مدیریت شرط لازم برای مدیریت توان و مدیریت توان شرط کافی برای توان مدیریت است. بنابراین دو اصطلاح فوق را می‌توان به‌صورت یک گزاره دو شرطی در نظر گرفت، به‌طوری که وجود یکی وابسته به دیگری است. «توان مدیریت» عبارت است از توانایی وکارایی مدیر به‌منظور هدایت ورهبری یک سازمان ویا رسیدن به یک هدف خاص، با دراختیار داشتن منابع وامکانات موجود .هرچه این منابع وامکانات بیشتر وبهتر باشد وراحت‌تر در اختیار مدیر قرار گیرد مدیرتوان کمتری جهت حصول به نتیجه مطلوب نیاز دارد.برعکس باکمبود امکانات ومنابع، مدیر می‌بایست راه دشوارتری را طی نموده وملزم به استفاده از توان بیشتری است. یک مدیر توانمند بسته به نوع وظایف وفعالیتهایی که انجام می‌دهد ویا از او انتظار می‌رود می بایست به پرورش خود بپردازد تا بتواند در مواقع لزوم با به‌کار گیری صحیح انباشتهای خود تصمیمی درست وتا حد امکان، دقیق و با در نظر گرفتن شرایط موجود اتخاذ کند، به‌طوری‌که در دراز مدت پاسخگوی نیازهای سازمان بوده ودر تحقق اهداف آن مثمر باشد.توان مدیریت در افراد مختلف متفاوت است وهمین امر باعث به‌وجود آمدن دو دسته مدیران توانمند وضعیف می‌گردد. در برخورد با چالش ضعف، مدیر در گام اول شروع به شناسایی هر چه دقیق تر توانایی های خود می‌کند ودر صورت وجود هرگونه کاستی به پرورش آن می‌پردازد. اینکه یک مجموعه یاسازمان تا چه حد در رسیدن به اهداف خود موفق است بستگی مستقیم به توان مدیران آن دارد. هرچه مدیر از توان بیشتری در برخورد بامسائل ومشکلات سازمان برخوردارباشد، آن سازمان موفق تر وهرچه این توان کمتر باشدسازمان ناموفق‌تر بوده ودر دستیابی به اهداف کوتاه مدت ودراز مدت خود دچار مشکل خواهد شد.البته توان مدیریت به عواملی ازقبیل تفویض اختیار وپشتوانه قدرت نیز بستگی دارد.چرا که بدون این دو مهم با توجه به کاهش حیطه اختیارات وقدرت تصمیم گیری مدیر قادر به ارائه راهکارهای سریع ومطلوب نخواهد بود.یکی دیگر از عوامل مهم وقابل اشاره در توان مدیر سلامت روحی وجسمی اوست. هرچه مدیراز سلامت بیشتری برخوردار باشد تمرکز ذهنی بیشتری برای حل مسائل خواهد داشت ودر فرایند انتخاب نمونه مناسب از میان نمونه‌های از پیش طراحی شده، تصمیم گیری واجرا موفق تر است.«مدیریت توان» اصطلاحی است که می‌توان از آن مفهوم استفاده صحیح وبهینه از توان مدیر توسط خود اورا استنباط کرد. به زبان ساده مدیریت توان عبارت است ازتقسیم وبه‌کارگیری صحیح تواناییهای موجود در مدیر به‌منظور نیل به برنامه ها واهداف سازمان.بسیاری ازسازمانهایی را می بینیم که باوجودداشتن مدیرانی توانمند، موفقیت چندانی به دست نمی آورند. این امر ناشی از عدم درک مدیر از تواناییهای خودوعدم به‌کارگیری صحیح و هدایت به‌موقع آن است. یک مدیر زیرک با کمی تفکر وتقسیم توانی که در خود احساس می‌کند، قادر به جلوگیری از هرز رفتن آن وهدایت آن در جهت رفع امور و نیازهای کاری ومدیریتی خود خواهد بود.توانایی را می‌توان به دو بخش تقسیم کرد:-1 توان عمومی -2توان ویژه یا خاصتوان عمومی: توانی فطری و غریزی است که در همه افراد وجود داردودر بر گیرنده کارهای عادی و روزمره است. این توان به نوبه خود سهم مهمی در رسیدن


دانلود با لینک مستقیم


مقاله در مورد توان مدیریت و مدیریت توان

تحقیق امار آموزش ریاضیات

اختصاصی از رزفایل تحقیق امار آموزش ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

آموزش ریاضیات، تنها برای افزایش توان فکری یا تحلیلی بشریت و کاربرد در زندگی یا سایر علوم مرتبط نیست. ریاضیات به علت داشتن تاریخ طولانی، انبوهی از دانسته ها را پدید آورده است، که بخش مهمی از علم و دانش بشری را تشکیل می‌دهد. بنابراین اگر آموزش را به عنوان ابزار حفظ، انتقال و بالا رفتن سطح فرهنگ جامعه و مخاطبان تعریف کنیم. یکی از وظایف معلم‌های ریاضی این است که دستاوردهای عظیم تاریخ ریاضیات را از طریق مدارس و کلاس های درس به نسل آینده انتقال دهند.

در کلاس‌های درس ریاضیات کنونی، اغلب معلمان ریاضی همواره می‌کوشند، تا ابتدا دانش‌آموزان درک درستی از مفاهیم ریاضی داشته باشند، سپس تکنیک ها و روش‌های حل مسأله را ارائه می‌دهند و در مرحله آخر، کاربردهایی از درس مورد نظر را برای دانش‌آموزان بیان می‌کنند و در ارائه این مطالب از روش‌های مختلف آموزش استفاده می‌کنند. اما معلم ریاضی با دانستن تاریخ ریاضیات براساس فعالیت دانش‌آموز، می‌تواند طوری تدریس کند که دانش‌آموز در فرایند حل مسأله یا اثبات یک قضیه قرار گرفته و تنها به راه حل اکتفا نکند. با این روش کاری می کنیم که دانش‌آموز، مراحل مختلف حل مسأله را خودش انجام دهد. این کار باعث می‌شود که دانش‌آموز تا اندازه ای در جریان حل مسأله و تاریخچه کشف یک قضیه قرار گیرد و به جای تکرار لفظی قضایا، علم را پیش خود بازآفرینی کند، تا این که به نتیجه مطلوب برسد. باید توجه داشته باشیم که تاریخ ریاضی فقط نقل روایت های زندگی علمی دانشمندان نیست.

وقتی به تاریخ می نگریم، ملاحظه می کنیم که در گذشته دور، سقراط نیز مسأله آموزش و پرورش و تئوری‌های یادگیری را مورد مطالعه قرار داده است. سقراط در روش خود، موسوم به روش «مامایی» بیان می کند که آموزش باید طوری باشد که دانش‌آموز (به معنی اعم آن) مفاهیم را بزاید و به نظر او معلم در این تولد، نقش «ماما» را دارد. همچنین ژان ژاک روسو اعتقاد خود را به آموزش بر محور دانش‌آموز بیان می کند، همچنین وی تاکید می‌کند که دانش‌آموز باید علم را پیش خود بازآفرینی کند. او می‌گوید دانش‌آموز باید علوم را کشف کند.

ژاک آدمار در کتاب روان شناسی ابداع در ریاضیات از قول هانری پوانکاره می نویسد:

«من بیان خواهم کرد که حل فلان قضیه، تحت بهمان شرایط اتفاق افتاد؛ این قضیه یک نام غیر مصطلح دارد که برای بسیاری کسان بیگانه است، اما این موضوع اهمیتی ندارد، آنچه برای روان شناس ریاضی جالب است، نه خود قضیه بلکه اوضاع و احوالی است که به ابداع منجر می‌شود.»

جمیز کلارک ماکسول معتقد است، خیلی مفید خواهد بود، اگر شاگردان در هر مبحثی، نوشته های دست اول مربوط به آن مبحث را بخوانند، زیرا علوم همیشه در همان صورتی که تولد یافته اند، بهتر جذب می‌شوند.‌‌

بنابراین، برای رسیدن به هدف های ظریفی که توسط محققان آموزش ریاضی در بالا پیشنهاد شده است، یعنی «افزایش درک ریاضی»، باید تاریخ ریاضیات را به عنوان یک ابزار موثر در دست معلم برای دادن بینش به دانش‌آموزان و برانگیختن علاقه آن‌ها در نظر گرفت. اگر با کاوشی در تاریخ ریاضیات بتوانیم دانش‌آموز را در اوضاع و احوالی قرار دهیم که منجر به کشف یک قضیه یا فرایند حل یک مسأله ‌شود در این صورت تدریس را به طور جذاب‌تر انجام داده‌ایم و دانش‌آموز با فکر خود «مانند یک ریاضیدان» شروع به اکتشاف می کند. در نتیجه دانش‌آموز با این عمل مفاهیم را کمتر فراموش خواهد کرد و چه بسا با این فرایند، دانش‌آموز بتواند مطالبی را با فکر خود بزاید، که برای ما تازگی داشته باشد، زیرا ریاضیات در حقیقت آفرینش آزادانه ذهن بدون هیچ محدودیتی به جز ماهیت خود ذهن است.

آشنایی با تاریخ ریاضیات، تسلط معلمان ریاضی را بر مباحث درسی کامل‌تر می کند و به آن‌ها امکان می دهد تا موضوع تدریس خود را عمیق تر و با احساس قوی‌تری درک و تدریس کنند. تا این جا دلایل لزوم آموزش تاریخ ریاضی در کلاس درس ذکر شد، اکنون نقش تاریخ ریاضیات در آموزش ریاضی را به شش مورد ذیل تقسیم می‌کنیم، سپس درباره هر کدام شرح می دهیم:

1ـ تاریخچه مختصری از موضوع درسی می‌تواند در دانش‌آموز ایجاد انگیزه و کلاس درس را زنده‌تر و جذاب‌تر کند.

وقتی معلم، هنگام تدریس یک موضوع گوشه ای از تاریخ مرتبط با موضوع درسی را بیان می کند، چون این‌گونه مطالب برای دانش‌آموزان جذابیت دارد، بنابراین آن‌ها به طور دقیق به این مطالب گوش می دهند و آمادگی کامل را برای خود درس پیدا می‌کنند؛ یعنی یکی از راه‌های آماده کردن دانش‌آموزان در کلاس درس، گریزهایی است که معلم به تاریخ ریاضی می‌زند. بنابراین آگاهی از روند پیدایش مفهوم‌ها و مباحث هر رشته علمی از جمله ریاضیات، موضوع درسی را برای فراگیرنده آن ملموس‌تر و جذاب‌تر می کند و این امر، یادگیری مطالب ریاضی را سریع تر و آسان‌تر می کند. همچنین با این کار، دانش‌آموزان به درک علت پیدایش مفهوم‌ها و موضوع‌های ریاضی دست پیدا می‌کنند و این امر باعث ایجاد انگیزه برای آموختن یک موضوع درسی در دانش‌آموزان می‌گردد. در زیر به ارائه چند تاریخچه از مفاهیم ریاضی می پردازیم:

وقتی موضوع لگاریتم را تدریس می کنیم، اگر وقت کلاس و میزان اطلاعات دانش‌آموزان این اجازه را به ما ندهد که تاریخچه پیدایش لگاریتم را مطرح کنیم، دست‌کم باید نامی از جان نپر و کارهای شگفت انگیز او برده شود، به عنوان مثال؛ شگفت آور نیست که نبوغ و قدرت تجسم نپر، بعضی ها را بر آن داشت تا وی را از لحاظ فکری نامتعادل پندارند و برخی دیگر او را به عنوان رواج دهنده سحر و جادو تلقی کنند، همچنین داستان‌های نپر را درباره خروس سیاه زغالی … و کبوترهای مزاحم همسایه‌اش …

بازگو کنیم.

هنگامی که موضوع احتمال را تدریس می کنیم، معمولاً تاریخچه علم احتمال را براساس بازی های شانسی معرفی می کنیم،

در این صورت درس برای دانش‌آموزان جذاب‌تر شده و درمی‌یابند که ریاضیات در زندگی روزمره آن‌ها کاربرد دارد. در این باره می‌توان گفت:

بازی هایی که متکی بر شانس است، از زمان های بسیار قدیم رایج بوده است. در حفاری‌های باستان شناسی، برخی وسایل و آثار مربوط به بازی های شانسی مشاهده شده است که می‌توان از مکعبی استخوانی که روی وجه های آن عددهایی از 1 تا 6 نقش شده است، نام برد. امروزه در مواردی که به راحتی نتوان یک انتخاب را برانتخاب دیگر ترجیح داد، از شانس استفاده می‌شود؛ مثلاً برای شروع بازی از پرتاب سکه استفاده می‌کنند یا برای قبول یا رد یک موضوع از قرعه استفاده می‌کنند. در گذشته نیز خانواده‌هایی که همسرشان را به روش سنتی انتخاب می کردند، در حقیقت براساس شانس انتخاب همسر کرده‌اند. و در روزگار کنونی کسانی که قادر به تصمیم گیری نیستند، به فال گیری و پیش گویی روی می آوردند و از این طریق بر شانس تکیه می‌ورزند.

نخستین مسأله‌های مربوط به نظریه احتمال در سده شانزدهم میلادی پدید آمد و مسأله‌ای که انگیزه‌ای برای تولد احتمال شد، مربوط به دمره نامی از دوستان پاسکال بود؛ «قرار بود مبلغی پول بین دو نفر با انداختن یک تاس تقسیم گردد»، این مسأله را پاسکال حل کرد. سپس حل خود را به فرما نشان داد، و فرما به یاری آنالیز ترکیبی این مسأله را حل کرد. اکنون اگر کمی درباره تاریخ زندگی فرما صحبت کنیم. دانش‌آموزان درمی یابند که بعضی از ریاضیدانان بزرگ، شغل دیگری داشته‌اند و برای اوقات فراغت و سرگرمی، ریاضی می‌خواندند.

«پیرفرما، فرزند یک تاجر پوست؛ درس حقوق خواند و در آغاز به عنوان وکیل مدافع به کار پرداخت، ولی بعد مشاور مجلس شد که تا پایان زندگی خود آن را حفظ کرد. شغل فرما، هیچ ربطی به ریاضیات نداشت، و این از جلمه شگفتی هاست که وی از همه وقت آزاد خود برای بررسی های ریاضی استفاده می کرد. »

در جلسه اول تدریس هندسه در دورة متوسطه، قبل از پرداختن به درس، می‌توان جذابیت این درس را با این جملات، کامل‌تر کرد؛ هندسه از معرفت ناخودآگاه موسوم به هندسپه ناخودآگاه شروع می‌شود، می‌توان ناخودآگاه را علم مشترک انسان و حیوان معرفی کرد که از مشاهده تصاویر، شکل ها و طبیعت شروع می‌شود. برای مثال اگر آشیانه یک کلاغ دست کاری شود، دیگر کلاغ به آن لانه برنمی‌گردد چون شکلی از لانه در ذهن دارد که تغییر یافته است.

شکل اولین مفهوم ریاضی است که نزد انسان پیدا شده است و هندسه تجربی (هندسه بدون استدلال) را پدید آورده است.

«با استفاده از کاغذ یا مقوا، می‌توان به صورت شهودی مفاهیم و قضایای هندسی را به صورت هندسه تجربی برای دانش‌آموزان ارائه کنیم.»

بالاخره هندسه در تاریخ خود به هندسه برهانی منجر می‌شود که با اصول موضوعه شروع می‌شود. بنابراین مدل تکامل علم هندسه را می‌توان برای دانش‌آموزان به صورت زیر بیان کرد.

بعد از این که توانستیم در دانش‌آموز ایجاد انگیزه کنیم، باید او را هدایت کنیم، که وقت خود را برای حل مسائلی نگذارد که امتناع آن‌ها قبلاً ثابت شده است. به عنوان مثال، ما هنوز با دانش‌آموزان یا افرادی روبه رو هستیم که درباره تثلیث زاویه، تربیع دایره و تضعیف مکعب به کمک خط کش غیر مدرج و پرگار، وقت صرف می‌کنند؛ درحالی که عدم اثبات این‌گونه مسائل قبلاً ثابت شده است. بنابراین اگر معلم در کلاس با اطلاع از تاریخ ریاضیات، این صحبت ها را بازگو کند، دیگر کسی بی دلیل وقت خود را تلف نمی‌کند. اما کار برروی مسائلی که امتناع آن‌ها ثابت نشده است و می دانیم که بالاخره به طریقی باید راه حلی برای آن‌ها کشف کرد، مانند حدس گلدباخ می‌توانیم دانش‌آموزان را تشویق به‌کار روی این‌گونه مسائل کنیم و این مسائل دارای ویژگی مهمی به صورت زیر است:

«ریاضی‌دانان و حتی غیر ریاضی‌دانانی بر روی این گونه مسائل کار کرده‌اند و بعضی از آن ها ادعا می‌کردند که توانسته‌اند این مسائل را ثابت کنند، نکته مهم این است که ریاضی‌دانان برای این که بتوانند این مسائل را اثبات کنند، روش‌های جدیدی را پیدا کرده‌اند و هم اکنون این مسائل چه حل شده باشند، یا نباشند، چیزی که باقی مانده و ارزشمند است، روش‌ها و دیدگاه‌های مختلف ریاضی است.»

2ـ تقویت هدف پرورشی آموزش ریاضی که همان اعتقاد به خود و اتکای به نفس در دانش‌آموز است.

اغلب دانش‌آموزان تصور می‌کنند مطالبی را که می خوانند، از ابتدا به همین شکل، حاضر و آماده بوده است و کسی آن ها را پیدا نکرده، یا این گونه مطالب به کمک تردستی و شعبده بازی به دست آمده اند. درحالی که اگر مطالبی راجع به تاریخ ریاضی گفته شود، دانش‌آموزان می‌فهمند که این مطالب چه مراحلی را گذرانده‌اند. در ابتدای کار خیلی دقیق نبوده و به تدریج در طول سال‌ها و شاید قرن ها به وسیله ریاضیدانان به شکل امروزی درآمده است.

به همین مناسبت دانش‌آموز اعتماد به نفس ‍یدا می کند، اگر در جایی بی دقتی یا اشتباهی داشته باشد، متوجه می‌شود که ریاضیدان‌ها نیز در ابتدای کار چنین بوده‌اند و حتی بعضی از آن ها در نظر دیگران افرادی کندذهن به نظر می‌آمدند. در زیر به ارائه این‌گونه مطالب می پردازیم:

ریاضیدان های اروپایی و ایرانی به جواب های منفی معادله ها بی توجه بودند و به ‌آن‌ها اهمیتی نمی دادند و آن‌ها را جواب‌های دروغ و بی معنا می دانستند. عددهای منفی تنها وقتی مورد قبول عام قرار گرفتند که سرچشمه واقعی آن ها پیدا شد. این سرچشمه را هندی‌ها با این دیدگاه به وجود آوردند که عدد کمتر از صفر را قرض و مقدار مثبت را دارایی می نامیدند.

زمانی که بویویی و لباچفسکی در قرن 19 هندسه نااقلیدوسی را ابداع کردند، آن‌ها متوجه نبودند که با ابداع هندسه نااقلیدوسی، انقلابی در ریاضیات به وجود آورده اند و مطمئناً هرگز تصور نمی‌کردند که صد سال بعد از این کار، فیزیکدانان در فرمول‌بندی نظریه نسبیت، هندسه نااقلیدوسی را درست همان ابزاری می‌یابند که برای ساده‌سازی نظریه اینشتین نیاز دارند. در حقیقت ابداع کنندگان مفاهیم و دستگاه‌های ریاضی، غالباً کاربردهای این مفاهیم و دستگاه‌ها را پیش بینی نمی‌کردند و چنین کاربرهایی، سال‌ها بعد به روش‌های پیش بینی نشده‌ای یافت می‌شوند.

در کتاب مشهور «مقدمات» اقلیدس، یک اصل وجود دارد که می‌گوید: «هرکل، از جزء خود بزرگتر است.»

این «اصل» چنان بدیهی به نظر می‌رسید که کسی کمترین تردیدی درباره درستی آن نداشت. ولی امروزه می‌دانیم، که این اصل، تنها درباره مجموعه با پایان درست است. زیرا اگر فرض کنیم

[ 2 و 1 ] = A و (2 و1) = B می دانیم B زیر مجموعه A است درحالی که طول دوبازه A و B برابر یکدیگراند، یعنی:

L A = L B

درباره نحوه پیدایش مشتق و دیفرانسیل می‌توان گفت:

مفهوم‌های اصلی آنالیز ریاضی برای نیوتن بازتابی از مفهوم های مکانیک بود. نیوتن ساده‌ترین شکل‌های هندسی یعنی خط، زاویه و جسم را با جابه جایی مکانیکی در نظر می‌گرفت. لایپ نیتس از درون هندسه به مفهوم مشتق و دیفرانسیل رسید. درضمن، بسیاری از اصطلاح‌هایی که لایپ نیتس در نوشته‌های خود به کار برده است، چنان خوب انتخاب شده بودند که تا امروز در ریاضیات باقی مانده است، از جمله می‌توان اصطلاح های تابع، مختصات، منحنی جبری و نمادهایی مانند: ∫ ، ý و dy را نام برد.

با آن که نیوتن کوشیده بود، نظریه حد را با دقت بیان کند، بازهم کمبودهایی در آن دیده می شد. از این گذشته در استفاده نیوتن از مقدارهای بی نهایت کوچک هم، ناروشنی هایی به چشم می‌خورد. همچنین لایپ نیتس و هواداران معاصر وی، تعریفی از کمیت‌های بی‌نهایت کوچک ارائه نداده اند. به این ترتیب، آنالیز ریاضی به صورت ابزار نیرومندی برای مطالعة پدیده‌ها در دست انسان بود، بدون این که خود آنالیز ریاضی به درستی در پایه های خود سازمان یافته و ساختاری منطقی داشته باشد.

بعدها یاکوب برنولی و فرانسوا هوپیتال ادامه دهندگان کار نیوتن و لایپ نیتس شدند و هوپیتال در سال 1696 کتاب

«آنالیز بی‌نهایت کوچک» را منتشر کرد که باید آن را نخستین کتاب منظم درسی در زمینه دیفرانسیل و انتگرال دانست. بالاخره کوشی (1789ـ1857) ریاضیدان فرانسوی با تعریف کمیت‌های بی‌نهایت کوچک، توانست پایه‌های آنالیز ریاضی را مستحکم کند.

3ـ معرفی ریاضیدانان ایرانی به عنوان الگو، حفظ و انتقال فرهنگ ریاضی کشورمان به نسل آینده

معرفی ریاضیدانان ایرانی و کارهایی که آن‌ها انجام داده‌اند، باعث می‌گردد که دانش‌آموزان الگوهایی درست در جهت فعالیت درسی انتخاب کنند. وقتی دانش‌آموزان بفهمند که اساس حساب، جبر و مثلثات در ایران بنیان نهاده شده است و ریاضیدان‌های ایرانی، حتی مثلثات کروی را هم تجزیه و تحلیل کرده بودند، در این صورت نسبت به خودشان و کشورشان در مقابل دیگران احساس ضعف نمی‌کنند. وقتی به تاریخ ارج گزارده شود، دانش‌آموزان درمی یابند که اگر روزی در زمینه ریاضیات کاری انجام دهند، بعدها از آن‌ها نامی در تاریخ خواهد ماند و همین امر باعث ایجاد انگیزه در دانش‌آموز می‌شود.

اگر به بناهای سنتی و باستانی سراسر ایران با دقت بنگریم یا به موزه ها برویم و دست ساخته‌های عتیقه و قدیمی را ملاحظه کنیم، در این صورت در همه آن ها، مفاهیم و شکل‌های هندسی را ملاحظه می‌کنیم که تجلی بخش معماری و صنعت ایرانی است. بنابراین این نوع دست ساخته‌های ریاضی‌وار و همچنین نوع زندگی (معیشتی، اعتقادی) و نوع کار کردن علمی ریاضیدانان ایرانی بخشی از فرهنگ ما را تشکیل می دهد، که معلم ریاضی می‌تواند آن را در کلاس درس به نسل آینده منتقل کند.

4ـ پاسخ گویی به بعضی از پرسش های دانش‌آموزان که به اطلاعات دقیق تاریخ ریاضی نیاز است .

گاهی در کلاس درس، سؤالاتی برای دانش‌آموزان پیش می آید که معلم برای پاسخ به آن ها باید اطلاعات دقیقی از تاریخ ریاضی داشته باشد. در زیر به چند نمونه می‌پردازیم:

واژه سینوس در حقیقت تغییر شکل یافته واژه لاتینی است که ترجمه واژه عربی «جیب» است، که ریاضیدانان مسلمان اشتباهاً به جای واژه هندی «جیا» به معنی «نصف وتر» به کار می بردند.


دانلود با لینک مستقیم


تحقیق امار آموزش ریاضیات

مقاله توان الکتریکی سه فاز

اختصاصی از رزفایل مقاله توان الکتریکی سه فاز دانلود با لینک مستقیم و پر سرعت .

مقاله توان الکتریکی سه فاز


مقاله توان الکتریکی سه فاز

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:43

توان الکتریکی سه فاز

در کشورهای صنعتی ، سه فاز روش عمومی انتقال توان الکتریکی است. این سیستم در واقع نوعی از سیستم چند فاز است. در نیروگاههای برق یک ژنراتور الکتریکی توان مکانیکی را به یک دسته از جریانهای الکتریکی متناوب تبدیل می‌کند که از هر کدام از سیم پیچهای الکترومغناطیسی یا سیم پیچهای ژنراتور تولید می‌شوند. جریانها همگی توابعی سینوسی از زمان هستند و همگی دارای فرکانسی مشابه اما با زاویه‌های متفاوت. در یک سیستم سه فاز ، زاویه‌ها دارای اختلاف 120 درجه‌ای (که حداکثر جداسازی ممکن بین زاویه‌هاست) هستند. فرکانس معمولاً در اروپا 50 هرتز و در ایالات متحده 60 هرتز است لیست کشورها به همراه پریزهای خطوط برق ، ولتاژها و فرکانسها را مشاهده کنید.) سه فاز معمولاً توسط رنگها نشانه گذاری شده‌اند، که بطور سنتی قرمز ، زرد و آبی هستند.
خروجی ولتاژ ژنراتورها از چند صد ولت تا بالای 20000 ولت تغییر می‌کند. این ولتاژ معمولاً توسط یک ترانسفورماتور به یک سطح ولتاژ بالاتری تبدیل می‌شود. علت این افزایش ولتاژ هم کاهش تلفات است. توان برابر حاصلضرب ولتاژ و جریان است، بنابراین برای یک توان داده شده اگر شما ولتاژ را افزایش دهید جریان کاهش می‌یابد. تلفات گرمایی در یک خط انتقال با مجذور جریان متناسب است و در نتیجه اگر شما جریان را نصف کنید، تلفات یک چهارم می‌شود. به همین علت برخی از خطوط انتقال در سطح ولتاژی بیش از 500،000 ولت کار می‌کنند.

در انتهای خط انتقال ، یک پست برق یا یک ترانسفورماتور ، برق را از ولتاژ زیاد خطوط انتقال به سه جریان متغیر سینوسی با ولتاژ 120 ولت (در ایالات متحده) یا 230 ولت (در اروپا) جریان متناوب (Vac) تبدیل می‌کند. سپس این برق از طریق چهار سیم به مدارات مصرف کننده‌ها در یک تابلوی فرمان اصلی ، ارائه می‌شود. یکی از سیمها خنثی است یا در منبع برق زمین شده است، فازها یا سه خط دیگر ، برق را به نقطه مقصد یا ترانسفورماتورهای تغذیه می‌رسانند. با برقراری اتصال بین یک فاز و سیم خنثی ، ولتاژی معادل 120 ولت متناوب (یا 230 ولت متناوب) برای مدار متصل شده فراهم می‌شود.
شبکه انتقال توان به گونه‌ای طراحی شده است که هر فاز اندازه جریانی برابر را از خود عبور دهد، همه جریانهای برگشتی از مناطق مسکونی مصرف کننده‌ها به نیروگاه ، در جریان سیم خنثی سهیم هستند، اما سیستم سه فاز تضمین می‌کند که جمع جریانهای برگشتی تقریباً صفر است. اتصال بین دو فاز ولتاژی معادل 3
یا 73/1 برابر ولتاژ تک فاز را ایجاد می‌کند (208 ولت متناوب در ایالات متحده ، 400 ولت متناوب در اروپا). شکل موجهای دارای اختلاف فاز ، با یکدیگر جمع می‌شوند تا یک پیک ولتاژی بالاتری را در شکل موج نهایی ایجاد کنند. چنین اتصالی را اتصال خط به خط می‌نامند و معمولاً با یک مدار شکن دو قطب صورت می‌گیرد. از این نوع اتصال بیشتر برای گرمکنها مانند یک گرمکن قرنیزی 2 کیلو وات و 208 ولت ، استفاده می‌کنند.

ولتاژهای استاندارد دیگر موجود در آمریکای شمالی شامل ولتاژهای 240 ولت فاز به فاز ، 277/480 ولت و 347/600 ولت می‌شود. ولتاژ فاز به زمین (سطح ولتاژ پایین تر) دو مورد آخر عموماً تنها برای روشنایی به کار می رود. ولتاژ 600 ولت در کانادا بسیار بیشتر از آمریکا ، معمول است. در موتورهای سه فاز یا هواسازهای کارا (برای مثال اکثر بخش های York که بالای 5/2 تن هستند، سه فاز اند) هر سه فاز برق مورد استفاده قرار می‌گیرد، چرا که این بهترین راه انتقال مقادیر بزرگ توان الکتریکی است. گفتنی است که راه اندازی موتور ، توان بیشتری را نیاز دارد.

برخی دستگاه‌هایی ساخته شده‌اند که یک سه فاز مصنوعی را از یک برق تک فاز تپ ـ وسط (240 ولت متناوب در ایلات متحده ، با تفکیک زاویه 180 درجه) ایجاد می کنند. این عمل با ایجاد یک "زیر فاز" سوم بین دو قطب انجام می شود که منجر به یک تفکیک فاز 90=90-180 درجه‌ای می‌شود. بسیاری از دستگاه‌های سه فاز بر این اساس کار می کنند، اما با یک فرکانس پایین‌تر. برخی اوقات برق تک فاز تپ ـ وسط240 ولت متناوب، به غلط برق "دو فاز" خوانده می شود. باید توجه شود که یک سیستم دو فاز سیستمی است که در آن دو ولتاژ دارای اختلاف 90 درجه‌ای هستند. برای مثال ، اگر یکی از ولتاژها برابر:

Cos 2п) * 60
و دیگری:

sin 2п) * 60t)

است، آنگاه شما یک سیستم دو فاز دارید که به عنوان سیستم عمود (یکی به عنوان بخش حقیقی و دیگری به عنوان بخش موهومی در نظر گرفته می شود) نیز شناخته می شود. یک سیستم دو فاز به ازای 120 ولت متناوب خط به خنثی تقریباً ولتاژی معادل 7/169 ولت متناوب خط به خط را ایجاد می‌کند. سیستمهای دو فاز تنها برای توان بالا به کار می‌روند چرا که آنها نیاز به سیمهایی به همان تعداد سیمهای ارتباطی اتصال مثلث سه فاز دارند (برای مثال یکی برای سینوس ، یکی برای کسینوس و یک سیم مشترک) و نیز سیستم دو فاز مقدار انرژی یکسان را در هر یک از سه سیم توزیع نمی‌کند (اگر چه سینوس و کسینوس متعادل‌اند، اما سیم خنثی مانند دو تای دیگر نیست). گفته می‌شود که یک سیستم دو فاز توان مختلط ایجاد می‌کند و چنین سیستمهایی در ولتاژهای پایین‌تر به کار می‌روند (برای مثال برای کاربردهای ارتباطی ، یا راه انداختن موتورهای پله‌ای و مانند این) و عموماً در سطح توانهای بالا توزیع نشده‌اند.

در عمل ، اگر ما فازورهای یک سیستم دو فاز یا سه فاز را حول دایره واحد در صفحه مختلط رسم کنیم، دارای یک نوع از توان مختلط خواهیم بود. یک سیستم فاز شکسته (تپ ـ وسط) 240 ولت متناوب ، وقتی که به صورت فازورها روی صفحه مختلط رسم شود، می تواند کاملاً در طول محور حقیقی وجود داشته باشد. در واقع ، این کمبود قابلیت توان مختلط است که توانایی یک سیستم تغذیه را برای تولید یک میدان دوار مغناطیسی تضعیف می‌کند و این میدان دوار مغناطیسی است که موجب گردش مؤثر موتورها می‌شود. چنین برقی (فاز شکسته) برای گرمایش خوب است، اما مثلاً برای گرداندن یک هوا ساز خیلی بهتر است تا از توان مختلط استفاده کنیم.

چگونه تغذیه سه فاز را امتحان کنیم یک تغذیه سه فاز الکتریکی شامل سه هادی فعال و یک زمین می‌شود. اگر که تغذیه الکتریکی یک موتور القایی سه فاز بین پارامترهای معینی نباشد، نمی‌تواند به درستی کار کند. این پارامترهای نوعی مانند مقابل‌اند: 208 یا 415 ولت بین فازها ، 120 یا 240 ولت بین هر فاز و زمین ، خطای ولتاژ کمتر از 12 درصد مقادیر نامی و اختلاف ولتاژ هر فاز کمتر از 5 درصد فاز دیگر. در یک مدار موتور القایی سه فاز نوعی ، یک مکان مناسب برای آزمایش در طرف خط راه انداز مستقیم موتور است.
چگونه دستگاههای سه فاز را امتحان کنیم

دستگاه‌های سه فاز نظیر پمپها ، کمپرسورها و ... بایستی فازهایشان به ترتیب درستی وصل شود تا از خرابی آنها جلوگیری شود. این دستگاهها عموماً هنگامی که به اشتباه وصل شوند جریان کمتری را می‌کشند و می‌توانند به آسانی توسط یک آمپروب (گیره روی آمپر متر) برای میزان جریانی که از شبکه می‌کشند امتحان شوند. برای مثال آزمایش یک هوا ساز که دارای یک کمپرسور است، می‌توان فهمید که اگر این وسیله به صورت غلطی به برق سه فاز متصل شود، جریان بسیار کمی را خواهد کشید و بنابراین جای هر کدام از دو سیم برق را می‌توان برای تغییر فازها عوض کرد. موتورهای جیبی کوچکی وجود دارند که از جهت چرخش آنها می‌توان برای تشخیص توالی فازها استفاده کرد. این موتورها گران هستند. یک جایگزین ارزانتر استفاده از سه لامپ نئون و دیدن اینکه توالی فاز یا روشن شدن لامپ ها در چه جهتی می چرخد، است. موضوعاتی شامل آزمایش مقاومت سیم پیچ موتور و آزمایش مقاومت خطای زمین بیان شده اند.

برای اطلاعات بیشتر راجع به مدارات سه فاز کلید واژه زیر را مشاهده کنید:

ترانسفورماتورهای ستاره مثلث

پریزهای الکتریکی سه فاز


دانلود با لینک مستقیم


مقاله توان الکتریکی سه فاز

تحقیق و بررسی در مورد انواع توان در شبکه های توزیع

اختصاصی از رزفایل تحقیق و بررسی در مورد انواع توان در شبکه های توزیع دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 2

 

انواع توان در شبکه های توزیعمی دانیم در شبکه های جریان متناوب توان ظاهری که از مولدها دریافت می شود به دو بخش توان مفید و غیر مفید تقسیم می شود . نحوه این تقسیم به شرایط مدار بستگی دارد به این معنی که هر قدر ضریب توان (CosΦ) به یک نزدیکتر باشد سهم توان مفید بیشتر است . این اتفاق در مدارتی رخ می دهد که مصارف اهمی آن بیشتر است .مانند سیستمهای روشنایی یا تولید گرما توسط انرژی برق . اما می دانیم که سهم عمده مصارف شبکه ها را مصرف کننده های (اهمی – سلفی ) دریافت می کنند . مانند الکتروموتورها – ترانسفورماتورهای توزیع – چوکها و .... که درآنها سیم پیچ یا سلف نقش اصلی را ایفا می کند . در سیمپیچها به علت خاصیت ذخیره سازی انرژی الکتریکی بصورت میدان مغناطیسی توان همواره بین شبکه و سلف رد و بدل می شود . سلف در یک چهارم زمان تناوب توان دریافت می کند و در یک چهارم بعدی زمان ، توان را به شبکه پس می دهد . درست است که نتیجه ریاضی این عمل یعنی عدم مصرف انرژی زیرا توان داده شده به سلف با توان دریافت شده از ان برابر است اما در عمل این اتفاق رخ نمی دهد زیرا توان پس داده شده به شبکه امکان استفاده را برای مولد ایجاد نمی کند و این توان در هر حالتی از مولد دریافت شده است . و برای رسیدن به مصرف کننده اهمی – سلفی از شبکه توزیع شامل : سیمها – کابلها و ... عبور کرده است .نتیجه اینکه سلف توانی را از مولد دریافت می کند اما این توان را به شبکه پس می دهد . این توان قابل استفاده نیست و در مسیر عبور تلف می شود . پس مقدار از توان تلف می شود . مصرف کننده های فوق برای انجام اینکار به توان مذکور نیاز دارند اما این توان برای شبکه مضر است و زیانهای زیر را در پی دارد :- اضافه شدن جریان مولد و درنتیجه نیاز به مولدهایی با توانهای بیشتر - چون جریان شبکه زیاد می شود به سیمها و کابلهایی با سطح مقطع بالاتر برای کاهش افت ولتاژ نیاز است که این موضوع هزینه اولیه شبکه را افزایش می دهد .- اتلاف توان در شبکه های توزیع بصورت حرارت روی می دهد در نتیجه هر کاری کنید نمی توانید از این اتلاف جلوگیری کنید . نتیجه این اتلاف توان ،کاهش ولتاژ مصرف کننده می باشد که این موضع راندمان مصرف کننده را پایین می آورد . - نمی توان این توان را به مصرف کننده های اهمی سلفی تحویل نداد زیرا کار آنها مختل می شود . خازن ناجی شبکه های تولید و توزیعتوان هم در خازنها بصورت توان غیر مفید است درست مانند سلفها در یک چهارم پریود موج متناوب ،توان دریافت می کنند و در یک چهارم بعدی توان را تحویل می دهند پس خازنها هم مانند سلفها باعث افرایش توان راکیتو ( غیر مفید ) شبکه می شوند اما اتفاق بامزه زمانی روی می دهد که خازن و سلف با هم در شبکه قرار گیرند .این دو برعکس هم عمل می کنند . یعنی زمانی که سلف توان می گیرد خازن توان می دهد و زمانی که سلف توان می دهد خازن توان می گیرد . پس توانهای غیر مفید این دو فقط یکبار از شبکه دریافت می شود و در زمانهای بعد بین آنها تبادل می شود بدون اینکه مولد این توان را تحمل کند . پس مصرف کننده های اهمی سلفی توان راکتیو خود را دریافت می کنند و مولد و شبکه توزیع آنرا تولید و پخش نمی کنند زیرا این کار را خازن انجام می دهد . این خازنها از حالا به بعد ، خازنهای اصلاح ضریب توان نام می گیرند و وظیفه آنها تامین توان راکتیو مورد نیاز مصرف کننده های اهمی سلفی است .اتصال خازن به شبکهخازنهای اصلاح ضریب توان باید در شبکه بصورت موازی قرار گیرند . برای اینکار در شبکه های تکفاز باید به فاز و نول وصل شوند و در شبکه های سه فاز پس از اتصال بصورت ستاره یا مثلث آنگاه به سه فاز متصل می شوند . مانند نقشه زیر : http://f7.yahoofs.com/users/4456488ezb5f4a273/2410scd/__sr_/b751scd.jpg?phA2qgFBUSfLnIJQhttp://f7.yahoofs.com/users/4456488ezb5f4a273/2410scd/__sr_/4c16scd.jpg?phA2qgFBsRpE589Oاین خازنها باید از انواعی انتخاب شوند که بتوانند دایمی در مدار قرار گیرند پس باید بتوانند ولتاژ شبکه را تحمل کنند در محاسبه خازن از انواعی استفاده می شود که ولتاژ مجاز آنها 15% بیشتر از ولتاژ شبکه باشد . محاسبه خازن نقش خازن در شبکه کاهش توان راکتیو مصرف کنند های اهمی – سلفی از دید مولدها است . با این اتفاق ضریب توان مفید به یک نزدیک می شود . پس با کنترل ضریب توان امکان کنترل توان راکتیو وجود دارد . این کار بکمک یک کسینوس فی متر صورت می گیرد . یعنی بکمک کسینوس فی متر می توان دریافت که ضریب توان و در نتیجه توان راکتیو در چه وضعیتی قرار دارد . دامنه تغییرات ضریب توان (CosΦ) : نمودار زیر دامنه تغییرات ضریب توان را نشان می دهد . http://f7.yahoofs.com/users/4456488ezb5f4a273/2410scd/__sr_/9331scd.jpg?phA2qgFBx_CvxMEaخازن مذکور باید برابر نیاز شبکه باشد در غیر اینصورت خود توان راکتیو از مولد دریافت می کند و همچنین سبب افزایش ولتاژ آن می شود . پس باید خازن مطابق نیاز شبکه محاسبه شود .پرسش : شبکه به چه مقدار خازن نیاز دارد ؟پاسخ : مقداری که ضریب توان را به یک نزدیک کند . این مقدار خازن خود توان راکتیوی ایجاد می کند که توان راکتیو مصرف کننده اهمی – سلفی را جبران می کند . پس مقدار خازن به مقدار توان راکتیو مدار بستگی دارد . هر قدر این توان قبل از خازن گذاری بیشتر باشد ، اندازه خازن نیز بزرگتر خواهد بود . با توجه به مطالب گفته شده باید برای محاسبه خازن دو مقدار مشخص شود : یک – مقدار ضریب توان شبکه قبل از خازن گذاریدو – مقدار ضریب توان شبکه بعد از خازن گذاری که انتظار داریم شبکه به آن برسدسه - اندازه توان اکتیو پس از تعیین این مقادیرمراحل زیر را پی می گیریم . برای مقدار ضریب توان مطلوب مثلا عدد 9/0 مقدار خوبی است . حال دو مقدار ضریب توان داریم یکی ضریب توان شبکه قبل از خازن گذاری و دیگری ضریب توان مطلوب که می خواهیم با گذاردن خازن به آن برسیم . بکمک رابطه زیر مقدار توان راکتیو مورد نظر را که با آمدن خازن تامین می شود محاسبه می کنیم . ( توجه : در خرید خازنهای اصلاح ضریب توان بجای فارد برای تعیین ظرفیت خازن از میزان توان راکتیو آن خازن سخن گفته می شود.) محاسبه خازن در این مرحله تمام می شود و مقدار توان بدست آمده همان مقدار خازن موردنیاز است .


دانلود با لینک مستقیم


تحقیق و بررسی در مورد انواع توان در شبکه های توزیع