رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد کاربرد نانو در صنایع دریایی 14 ص

اختصاصی از رزفایل تحقیق در مورد کاربرد نانو در صنایع دریایی 14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 14 صفحه


 قسمتی از متن .doc : 

 

کاربرد نانو در صنایع دریایی

 

قدرت دریایی هر کشور از عناصر مختلفی تشکیل می شود. این عناصر می توانند با ناوگان نظامی، ناوگان تجاری، ناوگان صیادی، ناوگان شناورهای مردمی ، مراکز آموزش دریایی و صنایع دریایی تشکیل شوند. یکی از قسمتهای مهم این قدرت دریایی، بخش صنایع دریایی است .

مقدمه :

امروزه بحث‌های بسیاری در زمینه فناوری‌نانو ، کاربردها، مزایا ودورنمای آیندة آن مطرح است. صنایع دریایی حوزة وسیعی از صنایع از قبیل ساخت کشتی؛ زیردریایی و سکوهای دریایی را شامل می‌شود که اغلب آنها در کشور ایران نوپا هستند. فناوری‌نانو در بخش‌های مختلف صنایع دریایی کاربردهای ارزنده‌ای دارد که می‌تواند صنایع دریایی کشور ایران را با تحول زیادی روبه‌رو کند. از طرفی شناسایی نیازهای گستردة صنایع دریایی می‌تواند بازار خوبی برای محصولات فناوری‌نانو در ایران باشد و زمینة رشد خوبی را نیز برای آن فراهم کند. در این مقاله برخی کاربردهای فناوری‌نانو در صنایع دریایی مورد ارزیابی قرار گرفته و در انتها نیز جایگاه صنایع دریایی درکشورایران آورده شده است.

قدرت دریایی هر کشور از عناصر مختلفی تشکیل می شود. این عناصر می توانند با ناوگان نظامی، ناوگان تجاری، ناوگان صیادی، ناوگان شناورهای مردمی ، مراکز آموزش دریایی و صنایع دریایی تشکیل شوند. یکی از قسمتهای مهم این قدرت دریایی، بخش صنایع دریایی است . قبل از اینکه بخواهیم درباره کاربردهای فناوری نانو در صنایع دریایی سخنی به میان آوریم؛بهتر است تا درباره چیستی این فناوری اندکی بدانیم. از نانو، بیوتکنولوژی و فناوری اطلاع رسانی به عنوان سه قلمرو علمی نام می برند که انقلاب سوم صنعتی را شکل می دهد. از همین روست که کشورهای در حال توسعه که اغلب از دو انقلاب قبل جا مانده اند، می کوشند با سرمایه گذاری در این سه قلمرو، عقب ماندگی خود را جبران کنند. همان گونه که در این گزارش می خوانید، نانوتکنولوژی کاربردهای گسترده ای در تمام حیطه های زندگی دارد و از این رو توسعه آن می تواند به بهبود و تسهیل زندگی کمک فراوان کند.

نانو مطالعه ذرات در مقیاس اتمی برای کنترل آنهاست. هدف اصلی اکثر تحقیقات نانو شکل‌ دهی ترکیبات جدید یا ایجاد تغییراتی در مواد موجود است. نانو در الکترونیک ، زیست ‌شناسی ، ژنتیک ، هوانوردی و حتی در مطالعات انرژی بکار برده می‌شود.در نیم قرن گذشته شاهد حضور حدود پنج فناوری عمده بودیم، که باعث پیشرفتهای عظیم اقتصادی در کشورهای سرمایه گذار و ایجاد فاصله شدید بین کشورهای جهان شد. در ایران بدلیل فقدان تصمیم گیری بموقع ، به این فرصتها پس از گذشت سالیان طولائی آن بها داده می‌شد ، همچون فنآوری الکترونیک و کامپیوتر در دو سه دهه گذشته که امروزه علیرغم توانایی دانشگاهی و داشتن تجهیزات آن ،ایران هیچگونه حضور تجاری در بازارهای چند صد میلیاردی آن ندارد. فناوری نانو با طبیعت فرا رشته‌ای خود ، در آینده در برگیرنده همه فناوریهای امروزین خواهد بود و به جای رقابت با فن آوریهای موجود ، مسیر رشد آنها را در دست گرفته و آنها را بصورت «یک حرف از علم» یکپارچه خواهد کرد.میلیونها سال است که در طبیعت ساختارهای بسیار پیچیده با ظرافت نانومتری (ملکولی) _مثل یک درخت یا یک میکروب_ ساخته می‌شود . علم بشری اینک در آستانه چنگ اندازی به این عرصه است، تا ساختارهائی بی‌نظیر بسازد که در طبیعت نیز یافت نمی‌شوند. فناوری نانو کاربردهای را به منصه ظهور می‌رساند که بشر از انجام آن به کلی عاجز بوده است و پیامدهائی را در جامعه بر جا می‌گذارد که بشر تصور آنها را هم نکرده است.

آغاز نانوتکنولوژی :

علم نانو و علوم مرتبط با آن جدید نیستند چرا که صدها سال است که شیمیدانان از تکنیک‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌هایی علم نانو در کار خود استفاده می‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌کنند که بی‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌شباهت به تنکنیک‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های امروزی نانو نیست. پنجره های رنگارنگ کلیساهای قرون وسطی، شمشیرهای یافت شده در حفاری های سرزمین های مسلمان همگی گویای این مطلب هستند که بشر مدت هاست که از برخی شگردهای این فناوری در بهینه کردن فرایندها و ساخت باکیفیت تر اشیاء بهره می برده است اما تنها به دلیل پیشرفت کم فناوری و نبود امکانات امروزی مانند میکروسکوپ نیروی اتمی، میکروسکوپ تونلی پیمایشی و غیره نتوانسته حوزه مشخصی برای این فناوری تعیین کند. نانو تکنولوژی از یک رشته علمی خاص مشتق نمی شود. با وجودی که نانو تکنولوژی بیشترین وجه مشترک را با علم مواد دارد، خواص اتم و ملکول شالوده بسیاری از علوم است و در نتیجه دانشمندان حوزه های علمی به آن جذب می شوند. برآورد می شود در سراسر جهان حدود 000/20 نفر در نانو تکنولوژی کار می کنند. پیشوند نانو از کلمه یونانی به معنای کوتوله مشتق می شود. برای اولین بار ریچارد فاینمن برنده جایزه نوبل فیزیک پتانسیل نانو علم را در یک سخنرانی تکان‌ دهنده با نام «درپایین اتاقهای زیادی وجود دارد»، مطرح کرد. فاینمن اصرار داشت، که دانشمندان ساخت وسائلی را که برای کار در مقیاس اتمی لازم است، شروع کنند.

این موضوع مسکوت ماند، تا اینکه اریک درکسلر ندای فاینمن را شنید و یک قالب ‌کاری برای مطالعه «وسایلی که توانایی حرکت دادن اشیاء مولکولی و مکان آنها را با دقت اتمی دارند»ایجاد کرد، که در سپتامبر 1981 در مقاله‌ای با نام«پروتئین راهی برای تولید انبوه مولکولی ایجاد می‌کند» آن را ارائه داد.درکسلر آن را با کتابی بنام «موتورهای خلقت» دنبال کرد و توسعه مفهوم نانو تکنولوژی را همانند یک کوشش علمی ادامه داد. اولین نشانه‌های ثبت ‌شده از این مفهوم نانو تکنولوژی تغییر مکان دادن اشیا مولکولی ، در سال 1989 بود، موقعی که دانشمندی در مرکز تحقیقات آلمادن IBM اتمهای منفرد گزنون را روی صفحه نیکل حرکت داد، تا نام IBM را روی سطح نیکل نقش کند.براساس برآورد شرکت لاکس ریسرچ درنیوریورک، بودجه کل تحقیق و توسعه نانو تکنولوژی دولت ها و شرکت ها در سراسر جهان در سال 2004 بیش از 6/8میلیارد دلار بود. نیمی از این بودجه از جانب دولت ها تأمین می شد. اما به پیش بینی لاکس ریسرچ در سال های آینده، شرکت ها احتمالاً بودجه بیشتری از دولت ها صرف این علم خواهند کرد. .در خلال شش سال پیش از 2003 سرمایه گذاری در نانو تکنولوژی توسط سازمان های دولتی هفت برابر شده است. این حجم سرمایه گذاری انتظارات را به اندازه ای افزایش داده است که شاید قابل تحقق نباشد. برخی معتقدند شرکت های نانو تکنولوژی مانند حباب شرکت های اینترنت در سال های اخیر از بین خواهند رفت. اما دلایلی وجود دارد که نشان می دهد درباره مخاطرات آن گزافه گویی شده است. سرمایه گذاران خصوصی اکنون بسیار محتاط تر از دوره رونق شرکت های اینترنت هستند و بیشتر پولی که دولت ها در این زمینه


دانلود با لینک مستقیم


تحقیق در مورد کاربرد نانو در صنایع دریایی 14 ص

تحقیق درباره کاربرد الکترومغناطیس در ژئوفیزیک

اختصاصی از رزفایل تحقیق درباره کاربرد الکترومغناطیس در ژئوفیزیک دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 40

 

مقدمه

هدفهای یک برداشت ژئوفیزیکی عبارتند از تعیین محل ساختارها یا اجسام زمین‌ساختی زیرزمینی و در صورت امکان اندازه گیری ابعاد و ویژگیهای فیزیکی مربوط به آنها د راکتشاف نفت اطلاعات ساختاری مورد توجه است زیرا نفت با عوارض خاص چون تاقدیس در سنگهای رسوبی ارتباط دارد. در ژئوفیزیک معدن تاکید بر آشکارسازی و تعیین ویژگهیای فیزیکی می شود. هر چند کانسارهای معدنی نشانه های ژئوفیزیکی متمایز و قابل اندازه گیری از خود بروز می دهند ولی اغلب شکل نامنظم دارند و در سنگهایی با ساختار پیچیده روی می دهند که تفسیبر کمی دقیق را دشوار یا غیرممکن می سازد. در بررسیهای اولیه ساختگاه ممکن است هم ساختار و هم ویژگیهای فیزیکی مورد توجه مهندسان باشد. در محل ساختمانهای بزرگ اغلب تغییرات عمقی سنگ کف مودر نیاز است ووقتی که تحمل بارهای سنگین مورد لزوم باشد ویژگیهای مکانیکی روبار ممکن است اهمیت پیدا کند.

یک برداشت ژئوفیزیکی شامل مجموعه ای از اندازه گیریهاست که معمولا با طرحی نظم دار بر روی سطح زمین دریا یا هوا به طور قائم در داخل چاه آزمایشی انجام می شود. این اندازه گیریها ممکن است از تغییرات فضایی میدانهای نیروی ایستا باشد(گرادیان های پتانسیل الکتریکی گرانشی یا مغناطیسی ) یا از سرشتیهای میدانهای موج بخصوص از زمان سیر امواج کشسان (لرزه ای و واپیچش ) دامنه و فاز امواج الکتور مغناطیسی . این میدانهای نیرو و موج تحت تاثیر ویژگیهای فیزیکی و ساختار سنگهای زیرزمینی قرار می گیرد. از آنجا که ویژگیهای فیزیکی اغلب مربوط به مرزهای زمینشناختی است و لذا هر گونه مساله ساختاری به تفسیر این میدانها در روی زمین بر حسب این ناپیوستگی ها بر می گردد. آسانی انجام این کار به عوامل بسیار بسته است که از آن میان پیچیدگی ساختار و درجه تباین ویژگیهای فیزیکی سنگهای سازنده آن ساختار اهمیت خاص دارند. واضح است که در انتخاب تکنیک ژئوفیزیکی که باید مطالعه مساله ای بکار رود تباین ویژگیهای سنگهای زیر زمینی وهمگنی آنها در یک سازند خاص از عوامل مهمی است که باید مورد توجه قرار گیرند. ویژگیهایی از سنگها که بیش از همه در اکتشافات ژئوفیزیکی از آنها استفاده می شود عبارتند از کشسانی ، رسانندگی الکتریکی ، چگالی ، خودپذیری مغناطیسی و قطبش پذیری باقمیانده والکتریکی . ویژگیهای دیگری چون درجه رادیواکتیویته نیز تا حد کمی به کار می روند.

همه مواد اثر گرانشی دارند ولذا تغییرات جانبی چگالی در داخل زمین تغییراتی کوچک ولی غلب قابل اندازه گیری در گرانی بر روی زمین بوجود می آورد. همین طور بسیاری از سنگها محتوی مقادیر کوچکی از ککانیهای مغناطیسی می باشند ولذا تا حدی از خودپذیری مغناطیسی یا مغناطیدگی دائم آنهاست سبب تغییرات محلی در میدان مغناطیسی منتجه می شود که باز هم بر روی سطح زمین قابل اندازه گیری است. از روی شکل میدانهای گرانشی یا مغناطیسی منتجه می شود که باز هم بر روی سسطح زمین قابل اندازه گیری است . از روی شکل میدانهای گرانشی یا مغناطیسی منتجه می شود که با زهم بر روی سطح زمین قابل اندازه گیری است . از روی شکل میدانهای گرانشی یا مغناطیسی سطح زمین میتوان استنتاجهایی از ساختار زیرزمینی بدست آورد هر چند به لحاظ ابهام دروانزادی در این روشهای میدان پتانسیل اگر بخواهیم به حلهای قابل استفاده برسیم به اطلاعات زمینشناسی یا اطلاعات ژئوفیزیکی دیگر نیاز داریم.

در اندازه گیریهای گرانشی و مغناطیسی از میدانهای طبیعی نیرو استفاده می شود. در


دانلود با لینک مستقیم


تحقیق درباره کاربرد الکترومغناطیس در ژئوفیزیک

دانلود کاربرد رایانه در برق

اختصاصی از رزفایل دانلود کاربرد رایانه در برق دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

مدار شماره 1

در مدارهای زیر الف) پتانسیل گره ها ب) جریان شاخه ها ج) توان هر یک از عناصر را بدست آورید. ابتدا برنامه را اجرا کرده وقتی محیط برای کار آماده شد مدار را رسم می کنیم. برای ترسیم مدار از کتابخانه Analog المان R (مقاومت را در محیط ترسیم قرار می دهیم و بعد از آن در همین کتابخانه منبع جـریان وابستـه بـه جریان F را در محـیط کـار قرار می دهـیم و در کتابخانه Source که مربوط به منابع می باشد منبع ولتاژ DC به نام VDC را در مدار قرار می دهیم و بعد از آن با استفاده از Place wire مدار را رسم می کنیم و زمین را که با نام O/Source مشخص شده است در جای خود قرار داده و برای تغییر مقدار مقاومت و مقدار منبع با دبل کلیک کردن روی مقدار پیش فرض آن مقدار مورد نیاز را واردمی نماییم و برای تعیین ضریب وابستگی منابع وابسته با دبل کلیک کردن بر روی آنها در قسمت Gain ضریب وابستگی را مشخص می کنیم و سپس خارج می شویم و بعد از ترسیم باید آن را آنالیز می کنیم.

بعد از آن وارد قسمت محیط آنالیز می شویم و در قسمت Analyses type نوع آنالیز را مشخص می کنیم

و بعد از آن گزینه Run را اجرا می کنیم ومی توان ولتاژ جریان و توان راباانتخاب گزینه های V و I و W مشاهده نمود.

1ـ پتانسیل گره ها

2ـ جریان شاخه ها

3ـ توان عناصر

مدار شماره 2

بعد از اجرای برنامه هنگامی که محیط برای کار آمداه شد مدار را رسم کرده

پتانسیل گره ها جریان شاخه ها

توان عناصر

آنالیز در حوزه زمان Time domain :

توسط این آنالیز می توان پتانسیل گره ها، جریان هر المان و توان المان را توسط شکل موج ملاحظه کرد ترانزیستور

در مدار شکل زیر توسط آنالیز Bias point نقطه کار شامل IB، IE، IC، VBC و VCE را بدست آورید. سپس مدار را در حوزه زمان آنالیز نموده و موارد خواسته شده را اندازه گیری کنید.

برای ترسیم مدار از کتابخانه Analog مقاومت R و خازن C-elect و از کتابخانه Source منبع ولتاژ سینوسی (VSIN) ترانزیستور Q2N2219 و از کتابخانه Bipolar انتخاب کرده و در محیط کار قرار می دهیم و سپس توسط گزینه Place wire مدار را ترسیم می کنیم و زمین را که به نام O/Source مشخص شده است در جای مناسب قرار می دهیم و ظرفیت مقاومت ها و خازن ها را با دابل کلیک کردن بر روی مقدار ظرفیتی که از پیش انتخاب شده است مقدار ظرفیت مورد نیاز را وارد می کنیم و برای منبع ولتاژ سینوسی مقدار Freq=1K,VAMPL=10mv,Voff=0 را با دابل کلیک کردن روی آنها مقدار لازم را وارد می کنیم و با استفاده از (Vin) Place Netaliul و (Voo) در روی مدار مشخص می کنیم.

بعد از آن گزینه New Simulation Profile را در بالای صفحه انتخاب کرده و سپس نامی را برای آنالیز انتخاب می کنیم.

و وارد محیط آنالیز می شویم و نوع آنالیز را Bias Point انتخاب کرده و OK را می زنیم. و سپس Run را اجرا می کنیم و با انتخاب این گزینه در بالای صفحه VCE و VBE را بدست می آوریم. و سپس با فعال کردن گزینه I جریان IB و IC و IE را بدست می آوریم.

سپس مدار را در حوزه زمان آنالیز می کنیم و موارد زیر را بدست می آوریم.

1ـ IB و IC و IE 2ـ شکل موج ورودی با اندازه 3ـ شکل موج خروجی با اندازه 4ـ محاسبه ضریب تقویت ولتاژ 5ـ محاسبه مقاومت خروجی تقویت کننده 6ـ ضریب تقویت جریان 7ـ مقاومت ورودی تقویت کننده برای آنالیز در حوزه زمان ابتدا نامی را برای آنالیز انتخاب می کنیم.

سپس نوع آنالیز را Time Domain انتخاب می کنیم و سپس مقدار مطلوب را برای Run to Time و Maximum Step Size انتخاب می کنیم و OK را می زنیم.

1ـ برای بدست آوردن جریان پایه بیس IB کرسر جریان را بروی پایه بیس قرار می دهیم و مدار را Run می کنیم. 2ـ برای بدست آوردن جریان پایه امیتر IE کرسر جریان را را روی پایه امیتر قرار داده و مدار را Run می کنیم. 3ـ برای بدست آوردن جریان پایه کلکتور IC کرسر جریان را روی پایه کلکتور قرار داده و مدار را Run می کنیم.

4ـ شکـل مـوج ورودی با انـدازه کرسر ولتاژ را در قسمت ورودی مدار Vin قرار داده و مدار را Run می کنیم.

5ـ برای رسم شکل موج خروجی با اندازه کرسر ولتاژ را در قسمت خروجی مدار Voo قرار داده و مدار را Run می کنیم.

6ـ برای محاسبه ضریب تقویت ولتاژ باید ولتاژ خروجی را تقسیم بر ولتاژ ورودی کرد.

 

7ـ مقاومت خروجی تقویت کننده را با استفاده از رابطه زیر بدست می آوریم.

 

با وارد کردن RL=1000meG مقدار Vooرا بدست می آوریم.

 

ضریب تقویت جریان برابر است با

 

Io برابر است با

 

Ii برابر است با

 

 

مقاومت روی تقویت کننده برابر است با

 

آنالیز DC Sweep

دیود معمولی

مدار را رسم نموده و منحنی مشخصه دیود را با استفاده از آنالیز DC Sweep بدست می آوریم. بعد از اجرای برنامه مدار را ترسیم می کنیم و برای ترسیم مدار از کتابخانه Analog مقاومت و از کتابخانه Diode دیود 1N4376 و از کتابخانه Source منبع VSC را انتخاب نموده و توسط گزینه Place wire مدار را ترسیم می کنیم و برای تعیین ظرفیت مقاومت با دابل کلیک کردن روی مقدار پیش فرض مقدار جدید را وارد می کنیم و در منبع VSRC مقدار DC را 1.V انتخاب می کنیم. سپس زمین را با نام O/Source در جای


دانلود با لینک مستقیم


دانلود کاربرد رایانه در برق

دانلود کاربرد برق در صنعت و مشاغل

اختصاصی از رزفایل دانلود کاربرد برق در صنعت و مشاغل دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

کاربرد برق در صنعت و مشاغل

مصارف صنعتی

تقریباً بیش از نصف برق تولیدی برای رفع احنیاجات صنعتی به کار می رود. موتورهای الکتریکی در اندازه های کوچک و بزرگ چرخ صنایع را به حرکت درمی آورند. الکترومغناطیس های بزرگ در جرثقیل ها کار جابه جا کردن قطعات بزرگ فلزی را به عهده دارند.

کاربرد در کشاورزی

اگر شما فرزند یک کشاورز باشید می توانید بسیاری از کاربردهای برق درمزارع را نام ببرید. می دانیم تا چندی قبل بسیاری از کارهای مزرعه توسط کشاورزان و خانواده های آنان با کمک حیواناتی مثل اسب انجام می شد. اینک چه تغییری پیدا شده است؟ مواد غذایی با بهای کمتری از نظرهزینه نیروی انسانی تهیه می شود، کشاورزان از وسایل زندگی بهتر استفاده می کنند و انرژی برق در کشاورزی به کار گرفته شده است.

برق ـ البته توع خاصی از آن ـ تراکتور کشاورز را راه می اندازد. باراو را حمل می کند. آب را به مزارع و محل مسکونی می رساند. بادبزن های الکتریکی هوای گرم تابستان را خنک می کنند. برق، گرمابخش زمستان سرد است. مانع فاسد شدن مواد غذایی می شود. صنایع غذایی را گسترش می دهد.

کاربرد در شهرها

شهرها معمولاً ۱۰ درصد برق تولیدی را مصرف می کنند. فروشگاهها، خانه ها ، هتلها، مساجد، بیمارستانها، ادارات و دیگرمراکز شهری برق مصرف می کنند. درشهر سیستم هوای مطبوع، هوای ادارات، بیمارستانها، هتل ها و آپارتمان ها را درتابستان خنک و سالم نگه می دارد. یک بیمارستان خوب بدون داشتن دستگاههای برقی نظیر اشعهٔ ایکس، آسانسورها، تخت های جراحی ، دستگاههای استرلیزه کردن ، لامپ های مخصوص و دیگر وسایل نمی تواند خدمت لازم را در اختیار بیماران قرار دهد.

روشنایی اماکن و معابر در شب، که نعمت بزرگی است فراموش نشود.

کاربرد درحمل و نقل

حمل و نقل زمینی، دریایی، هوایی به صورت پیشرفته امروزی فقط با استفاده از نیروی برق مقدور است. ماشین های سواری، اتوبوس ها، لکوموتیوها، مستقیم یا غیر مستقیم از انرژی برق استفاده می کنند. در خطوط کشتیرانی از پختن غذا گرفته تا تهویه هوای کشتی از برق استفاده می شود.

هواپیما های مسافربری یا نظامی، روشنایی، گرما، تهویه، کنترل فشار وقدرت خود را توسط نیروی برق تأمین می کنند.

کاربرد ارتباطاتی ( مخابرات )

تلگراف، تلفن، رادیو و برنامه های فضایی قدرت خود را از برق دریافت می کنند. بدون برق نفوذ به داخل فضا و شناخت نادیده های فضایی و ارتباط با کرات آسمانی امکان پذیر نیست. امروزه کشورهای جهان توسط دستگاههای مخابراتی به هم وصل هستند. از ایستگاههای رادیویی مختلف می توان اخبار را شنید.فکر می کنیم همین مختصر توضیح دربارهٔ اهمیت صنعت برق و شناخت آن کافی باشد و حال به سروقت روش های تولید برق می رویم و سپس به درون نیروگاه گاه برمی داریم.به طوری که می دانیم، انرژی الکتریکی قابل دیدن نیست. با وجود این اطراف ما را پوشانیده است. می توان گفت الکتریسیته همه جا هست. در حقیقت قسمتی از ساختمان تمام مواد طبیعی الکتریسیته است. تنها کاری که باید انجام دهیم این است که الکتریسیته را از درون مواد بیرون بیاوریم و به کارگیریم.همان طور که گفتیم برق شکلی از انرژی است که از تبدیل سایر انرژی ها به وجود می آید. دستگاهی را که سایر انرژی ها را به انرژی برق تبدیل می کند، مولد می نامند.پیل، یک مول برق است. این مولد، انرژی شیمیایی را به انرژی الکتریکی تبدیل می کند. درباره پیل ( باتری ) درکتاب های علوم به طور مفصل بحث شده است. پیل به دو صورت، پیل خشک و پیل تر موجود است. هریک از شما برای یک بار هم که شده پیل را به کار برده اید. پیل خشک برای به کار انداختن وسایل بازی، رادیوها، چراغ قوه ها و ضبط صوت ها و گروه دیگری از وسایل الکتریکی مورد استفاده قرار می گیرند. پیل های مزبور در اندازه و شکل های مختلف ساخته می شوند. این پیل ها پس از مدتی برق آنها تمام می شود و دیگر نمی توان از آنها استقاده کرد.یکی دیگر از انواع مولدهای شیمیایی، انباره یا باتری اتومبیل است که آن را باتری تر نیز می نامند. از این باتری های تر امروزه علاوه بر اتومبیل، درمراکز صنعتی و از جمله در داخل نیروگاهها نیز برای موارد اضطراری استفاده می کنند. این باتری ها طوری طراحی شده اند که می توانند در دفعات زیاد پر و خالی شوند.برقی که به روشهای مختلف تولید می شود به نام برق جریان مستقیم یا برق D.C برق جریان متناوب A.C نامگذاری شده است . برق D.C مانند یک خیابان یک طرفه است. الکترون ها مانند وسایط نقلیه فقط دریک جهت حرکت دارند. برق A.C یا برق جریان متناوب در صنعت و مصارف خانگی مورد استفاده قرارمی گیرد.دستگاهی را که برق A.C تولید می کند، مولد یا ژنراتور می نامند. برحسب اینکه انرژی لازم برای به حرکت درآوردن مولد از چه منبعی دریافت شود، مولد را با آن نام می خوانند. مانند نیروگاههایی که قبلاً انواع آنها را نام برده ایم. به عنوان مثال اگر برای گرداندن مولد، از انرژی حرارتی استفاده شود، مولد را توربوژنراتور حرارتی می گویند که از جمله آنها توربوژنراتورهای بخاری است.

طرز کار این نوع مولد به این ترتیب است که ابتدا آب را به وسیله سوختی مانند زغال سنگ، گاز و مواد نفتی مانند مازوت به بخارتبدیل می کنند. بخارتولید شده پس از عبور از لوله های مخصوص با فشارزیاد به پره های توربین برخورد می کند و آن را به گردش درمی آورد. چون محور توربین و محور ژنراتور به هم متصلند، درنتیجه ژنراتور شروع به چرخیدن کرده و برق تولید می کند.مولد برقی که به وسیلهٔ موتور دیزلی به گردش درمی آید به نام دیزل ژنراتور نامیده می شود. به همین ترتیب می توان برای تولید برق از انرژی باد، خورشید، آب و همچنین از انرژی هسته ای استفاده کرد که دراین باره، هنگام توضیح دربارهٔ کار این نوع نیروگاهها مفصل تر صحبت خواهیم داشت.یادمان نرود که دینام دوچرخه هم یک ژنراتور کوچک برق است که محور آن توسط انرژی پاهایمان هنگام رکاب زدن به حرکت درمی آید و مقداری از انرژی ما به برق تبدیل می شود و ما می توانیم در روشنایی لامپ دوچرخه، به حرکت خود در شب ادامه دهیم.


دانلود با لینک مستقیم


دانلود کاربرد برق در صنعت و مشاغل

مقاله کاربرد کامپوزیت جهت آب بندهای مکانیکی

اختصاصی از رزفایل مقاله کاربرد کامپوزیت جهت آب بندهای مکانیکی دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد کامپوزیت جهت آب بندهای مکانیکی


مقاله کاربرد کامپوزیت جهت آب بندهای مکانیکی

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:47

مقدمه

کامپوزیت[1] نامی کلی برای مواد یا قطعاتی که از مواد و اجسام متفاوت با حفظ ساختار و نمای عمومی هر یک ساخته می شود است. به بیان دیگر برای هر نوع جسمی که از مخلوط دو یا چند ماده، با ترکیب و خواص معین ساخته شده است بطوریکه در مجموعه سیستم هر کدام با مشخصات فیزیکی و مکانیکی خاص خود ظاهر می شود. مهمترین اختلاف بین کامپوزیتها و آلیاژها، یا مواد ترکیبی از همین ویژگی حاصل می شود. در آلیاژها یا مواد ترکیبی، هر جزء در مجموعه سیستم ضمن اینکه اثرگذاری کامل را دارد، از ویژگیهای خاص خود جدا شده است و به عبارت دیگر در مقیاس های بزرگتر از فازی، قابل تشخیص نیست. از این رو مناسبتر به نظر می رسد که کامپوزیتها به عنوان (مواد چند سازه) تعریف می شوند. تا در مقابل مواد معین و آلیاژها که ترکیباتی تکسازه هستند، متمایز می شوند.

مواد تک سازه به طور معمول دارای محدودیتهایی از نظر تلفیق خواص مختلف مانند استحکام، چقرمگی، قابلیت روانکاری، مقاومت به سایش، مقاومت در دمای بالا، ضریب انبساط حرارتی، چگالی و غیره می باشند. برای ایجاد تلفیقهایی خاص از این خواص مختلف، انواع کامپوزیتها طراحی و تولید شده اند. کامپوزیتهایی که در آب بند مکانیکی استفاده می شوند باید دارای قابلیت روانکاری، مقاومت به سایش، ضریب انبساط حرارتی کم، سختی، استحکام بالا و مقاومت به خوردگی بالا باشند[1].

 

2- مطالعات مروری

2-1- فرآیند آلیاژ سازی مکانیکی[2]

در این فرآیند اجزاء سازنده پودر کامپوزیتی با همدیگر در یک مدت زمان مشخص، آسیاب می شوند تا به صورت همگن در آیند . در طی این فرآیند اندازه ذرات مخلوط شده در اثر پهن شدن و شکستن کاهش می یابد. نیروهای برشی و فشاری که در اثر برخورد گلوله ها به پودر وارد می شود، باعث آگلومره شدن ذرات می گردد. زمان آسیاب می بایست تا حد امکان کوتاه در نظر گرفته شود تا اندازه ذرات بیش از حد کاهش نیابد. از این رو در آسیاب هایی با انرژی بالا معمولاً زمان آسیاب کمتر از 1 ساعت است. در نتیجه پودرهای کامپوزیتی تولید شده از این طریق، اندازه ای تقریباً برابر اندازه ذرات اولیه خواهند داشت.

روش آلیاژ سازی مکانیکی اولین بار توسط Benjamin و همکارانش در اواخر دهه 1960 معرفی شد. آنها این روش را به منظور تولید سوپر آلیاژهای پایه نیکلی استحکام یافته با ذرات اکسیدی (ODS)[3] بکار بردند. روش آلیـــاژســازی مکانیکی تا مدتها تنها به منظور تهیه پودر آلیاژهای ODS مورد استفاده قرار می گرفت . تا اینکه در اوایل دهه 1980 مشخص گردید که روش آلیاژسازی مکانیکی می تواند برای ایجاد ساختارهای آمورف نیز استفاده گردد. پس از این کشف روش آلیاژسازی مکانیکی می تواند به عنوان روشی که در حالت جامد امکان ساخت مواد و آلیاژهای مختلف را فراهم می ساخت، مورد توجه بسیار زیاد محققین و مهندسین مواد قرار گرفت و زمینه های تحقیقاتی جدیدی را در پیش روی آنان باز کرد. روش آلیاژسازی مکانیکی با تسریع کینتیک بسیاری از واکنش های شیمیایی و تغییر حالت های متالورژیکی، وقوع آنها را در دمای محیط امکان پذیر می سازد؛ در نتیجه با این روش بسیاری از مواد و ساختارها در حالت جامد قابل تولید می باشند. تجهیزات ساده، عدم نیاز به درجه حرارت های بالا و انجام عملیات تولید تنها در طی یک مرحله، از ویژگیهای روش آلیاژسازی مکانیکی است که می تواند تولید بسیاری از مواد و آلیاژها را با کمک این فرآیند، مقرون به صرفه تر از روش های متداول سازد. به علاوه محصول نهایی در روش آلیاژسازی مکانیکی ساختاری ریز لا یکنواختی آسیاب ها پر انرژی نظیر آسیاب های گلوله ای سیاره ای[4]، آسیاب های گلوله ای ارتعاشی[5]، آسیاب های گلوله ای یا میله ای غلتشی[6]، آسیاب های گلوله ای شافتی[7] و آسیاب مغناطیسی[8] قابل استفاده در این روش هستند. تفاوت این آسیاب ها عمدتاً در ظرفیت، راندمان و امکانــات اضـــافی آنها برای گرم یا خنک کردن محفظه است.

 

2-1-1- متغیرهای فرآیند آلیاژسازی مکانیکی

آلیاژسازی مکانیکی فرآیند پیچیده ای است و برای حصول فاز یا ریزساختار مورد نظر، متغیرهای گوناگونی بـاید بهینه شوند. بـرخی از مهمترین متغیـرهـا که روی نوع و ساختار محصول نهایی تاثیر می گذارند عبارتند از

 - نوع آسیاب

- جنس ، اندازه و توزیع اندازه گلوله های آسیاب

- نسبت وزنی گلوله ها به پودر

- میزان پر شدن محفظه

- زمان آسیاب کردن

- درجه حرارت[2]

 

2-2- کامپوزیتها

کامپوزیت زمینه فلزی(MMC )[9] مجموعه ای از زمینه آلیاژی فلزی نرم و افزودنی استحکام بخش(که معمولا ماده ای سرامیکی است) که برای تامین استحکام و سفتی مناسب تهیه می شود. دلایل زیادی برای تمایل طراحان و مهندسان به قطعات MMC وجود دارد که فرای نیاز به افزایش استحکام است. کامپوزیتها قابلیت فراهم آوری قطعات دارای خواص انتخابی برای کاربرد های بسیار تخصصی را دارند که در آ«ها محدوده ای از خواص فیزیکی و مکانیکی را می توان از مجموعه سرامیک و فلز(یا آلیاژ) به دست آورد. بعضی از عوامل مهم مورد توجه عبارتند از: بهبود استحکام در دماهای بالا، بهبود مدول(یا سفتی)، امکان کاهش وزن با بالا بردن نسبت استحکام به وزن، بهبود مقاومت سایشی و کاهش ضریب انبساط حرارتی.

کامپوزیت های زمینه فلزی به دلیل دارا بودن نسبت استحکام به وزن بالا، مدول الاستیک خوب، مقاومت برشی عالی و مقاومت خزشی مناسب امروزه کاربرد های فراوانی در صنایع و به خصوص صنایع هوا فضا پیدا کرده اند. در هر حال، فرم پذیری ضعیف MMC ها، تا حدی کاربرد آنها را تحت تاثیر قرار داده است.

به طور کلی MMC ها شامل دو جزء اصلی می باشند:

  • زمینه فلزی: که عمدتا از فلزات سبک مثل Ti,Mg,Al وآلیاز های آنها می باشند.
  • تقویت کننده ها: که شامل فایبر ها، ترکیبات بین فلزی و ذرات سخت سرامیکی مثل SiC, Al2O3,Y2O3 و ... می باشند[1].

متداولترین فرایند برای تولید سرامیک های شامل بورید، کاربید، نیترید و اکسید متنوعی از فلزات پرس گرم(HP)[10] است. روش دیگر در ساخت سرامیک ها با تکنولوژی بالا، پرس ایزو استاتیک گرم (HIP)[11] است. در روش پرس گرم پودر سرامیکی داخل قالب در یک کوره دمای بالا قرار گرفته و تحت فشار تک محوری قرار می گیرد. در حالی که نمونه در دمای بالا زیر نقطه ذوب قرار دارد، به هم آمیختگی ذرات پودری انجام می شود تا در طول زمان مورد نیاز کل قطعه سینتر شود. این عملیات از نظرکاربرد انرژی خیلی گران است.

در روش دیگر نمونه  پودر ابتدا پرس سرد شده تا شکل مطلوب بدست آید و سپس تا دمایºC 2000 گرم شده وتحت فشار یک سیال کاری، معمولا˝یک گاز خنثی در فشار بیشتر از  Mpa120 قرار میگیرد. مزیت آن این است که می توان قطعات پیچیده تر تولید کرد، اما به هر حال تجهیزات و آماده سازی قطعه خام قیمت محصولات را افزایش می دهد. در دو دهه اخیر روش سنتز احتراقی به دلیل مزایایی که دارد در تولید سرامیکها مورد توجه قرار گرفته است[3].

 

2-3- کامپوزیتهای تحت بررسی برای کاربرد در آب بند های مکانیکی

به منظور بررسی امکان تولید ترکیبات آب بندهای مکانیکی به روش سنتز احتراقی، ابتدا ترکیب TiB-Ti توسط روش سنتز احتراقی تولید شد و با نتایج تفرق اشعه ایکس، تایید گردید و سپس خواص متالورژیکی آنها بررسی شد و با مقایسه با نمونه آب بند مکانیکی SiC مورد تجزیه و تحلیل قرار گرفت.

همچنین ترکیبات Ti3SiC2، TiC-TiB2،TiB2-TiC-SiC ، TiC-NiAl، TiC-SiC توسط روش سنتز احتراقی تولید شدند و در حال انجام تجزیه و تحلیل و ازیابی خواص متالورژیکی آنها هستیم.  

 

TiB-Ti2-3-1- کامپوزیت.

روشهای تولید آن شامل پرس گرم، پرس ایزو استاتیک گرم، سنتز احتراقی و... می باشد. با انجام سنتز احتراقی می توان این سرامیک را با چگالی بیش از 90 در صد چگالی تئوری تولید کرد

یکی از روشهای تولید کامپوزیتTiB-Ti روش اسپارک پلاسما سینترینگ (SPS) است. آلیاژ سازی مکانیکی فاصلهء نفوذی در طول فرآیند سینترینگ را کاهش می دهد و انتظار آن است که دمای سینترینگ را کاهش دهد.


[1] Composit

[2] mechanical alloying

[3] Oxide Dispersion Strengthened

[4] planetary ball mill

[5] shaker ball mill

[6] tumbler mill

[7] attrior ball mill

[8] uni-ball

 

[9] Metal Matrix Composit

[10] Hot pressing

[11] Hot iso static pressing


دانلود با لینک مستقیم


مقاله کاربرد کامپوزیت جهت آب بندهای مکانیکی