رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلودتحقیق درمورد میکروسکوپی نیروی اتمی و اسپکتروسکوپی همبستگی فوتون 22 ص

اختصاصی از رزفایل دانلودتحقیق درمورد میکروسکوپی نیروی اتمی و اسپکتروسکوپی همبستگی فوتون 22 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

میکروسکوپی نیروی اتمی و اسپکتروسکوپی همبستگی فوتون

دو روش برای سرعت بخشیدن به ترسیم لیپوزوم ها

چکیده

ارزیابی مستقیم ناهه گن تعداد ذرات که سیستم های انتقال داروی نانومتریک هستند ،از جمله : لیپوزوم ها ، به علت اندازه و داشتن حامل بودن ،مشکل است . تاثیر نسبت و ترکیب لیپودیک برروی استحکام فیزیکی لیپوزوم ها در هنگام نگه داری ازطریق روش میکروسکوپی نیروی اتم (AFM ) و اسکتروسکوپی همبستگی فوتون ( ( PCS مورد بررسی قرار گرفت . لیپوزوم ها ازترکیب لیپیدهای مختلف ساخته شده و با استفاده از روشهای متفاوت و مجزای آماده سازی به دست می آیند . تصاویر AFMپس از رسوب گیری نمونه برروی سطح میکابه دست می ایند و آبدانک ها ی کروی شکل می گیرند . در مدت هفت ماهی که آزمایش انجام شد، میانگین اندازه های لیپوزم های مختلف با استفاده از دو روش قابل مقایسه بودند . براساس آنالیز PCS ،تصاویرAFM نشان داد که تقریبا سیستم های مختلف آبدانه ای گرایش دارند که در هنگام ذخیره سازی ،توده ها شکل دهند . با افزایش ارزش شاخص پلی دیس پرسیتی می توان استحکام تضعیف شده را قوی کرد . حالات متفاوتی که مشاهده می شود ،بیشتر از روشهای آماده سازی لیپوزوم ، به ترکیبات لیپیدی نسبت داده شده اند در نتیجه روش AFM به علت نسبی بودن برای کنترل تکنولوژی میزان پراکندگی و ترسیم فاکتورهای آماده سازی مفید است .

مقدمه :

لیپوزوم ها ابدانک کلوئیدی هستند که از طریق هیدارتاسیون قشرهای نازک حشک شکل می گیرند . فسفولیپیدها به طور معمول برای آماده کردن این سیستم ها استفاده می شوند . به طوریکه خود به خود د رمحلول آبی انباشته شده و یک یا چندین لیپید دو لایه ای را می سازند که این دو لایه ایی ، هسته آبی را در برمی گیرد . اکثر اوقات لیپوزوم ها به عنوان یک فرمول استفاده می شود . بادر نظر گرفتن شیمیایی بودن نسبی آنها از لیپیدهای بیودگردبل و بیوکوم پتیبل می توان بسیاری از داروها به صورت کپسول در آورده که به همین روش محصولات دیگری از جمله :داروهای نیرو بخش روانی ،داروهای ضد قارچی و ضد سرطانی تولید شده اند . (گولاتی -1988 . لیان وهو -2001 ) از اساسی ترین محدودیتهای فرمول لیپوزوم ها ناپایداری آنهاست . علت ناپایداری شیمیایی آنها به دلیل فرایند ترکیب اکسیژن با اسیدهای چربی اشباع نشده و استربوندهایی است که از طریق آب تجزیه شده اند . در حالی که ناپایداری فیزیکی این لیپوزوم ها به خاطر نشست دارو و انبوهش ویا پراکندگی آبدانک هاست که ذرات بزرگ رامی سازند این ناپایداری ها بروی حالات بافت زنده ی لیپوزوم ها تاثیر می گذارد . از این رو نیاز است که قبل از به کار بردن فرمول لیپوزومال برای درمان های دارویی، تحقیقات بسیاری انجام می گیرد . مواردی چون کوچکی ، تک پاشیدگی و آبدانکهای مقاوم برای آماده سازی بهینه نیاز هستند چرا که غلظت پلاسمهای دارویی لیپوزوم های بزرگ ممکن است به سرعت از طریق سیستم reticulondo the lial (Res) کاهش یابد و در نتیجه این لیپوزوم هاتخلیه شوند مشاهدات ویژگیهای هندسی اندازه و خصوصیات لیپوزوم هادر محیط آبی در کاربرد پتانسیل سیستم ها به عنوان دارو ،از جمله نکاتی هستند که باید به آنها توجه داشت . از این رو راههاو روش های بسیاری از جمله میکروسکوپی وانواع مختلف اسپکتروپی ها ،به عنوان بهترین ابزار برای توصیف لیپوزوم ها به کار گرفته شده اند .

در طی چند سال گذشته کاربرد AFM در زمینه های بیوتکنولوژی،وسایل نیمه رسانا ،پلیمرها،قشرهای نازک وسطح کانی و همچنین در زمینه بیولوژیکی ودرارو سازی افزایش یافته است . به عنوان مثال از AFM همواره برای تصویرسازی سطوح باکتریایی (بونارت -2002) ،غلظت پلیمر –دی. ان.ای (مارتین -2000 ) نانو پارتیکل های چربی جامد (زر محلن -1996 )وتعییرات مورفولوژی لیپوزوم دی.ان.ای .(D.N.A ) استفاده می شود . AFM یکی از روشهایی است که در خانواده میکروسکوپهای اسکن کننده با قدرت بالایA1 ،این امکان رافراهم میکند که حتی لیپوزومهای بسیارریز رادرمحیط طبیعی ،بدون هیچ دخل وتصرفی در نمونه آن را ببینیم . به دلیل صراحت نسبی AFM ،از این روش میتوان برای کنترل تکنولوژی میزان پراکندگی استفاده کرد . هدف این مقاله این است که کاربرد AFM را به منظور توصیف ونگهداری استحکام لیپوزوم های معلق کلوئیدی بالا ببرد وروش AFM را با اسپکتروسکوپی همبستگی موتون مقایسه کند . همچنین باید در نظرداشت که ترکیبات چربی لیپوزوم می تواند بر روی ساختارهای حمال تأثیربگذارد .به عنوان مثال از چربی ها در قابلیت بار گذاری ،ویژگیهای سلولی و در تقسیم بدنی و لیپوزوم معلق در مقدارهای متفارت استفاده می شود . دو چربی طبیعی چون فسفاتید کلین و کلسترول و یکی از معروفترین چربی ها که کاتیون فعال دارد


دانلود با لینک مستقیم


دانلودتحقیق درمورد میکروسکوپی نیروی اتمی و اسپکتروسکوپی همبستگی فوتون 22 ص

تحقیق ساختار نیروگاه های اتمی جهان

اختصاصی از رزفایل تحقیق ساختار نیروگاه های اتمی جهان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

ساختار نیروگاه های اتمی جهان

برحسب نظریه اتمی عنصر عبارت است از یک جسم خالص ساده که با روش های شیمیایی نمی توان آن را تفکیک کرد. از ترکیب عناصر با یکدیگر اجسام مرکب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود ۹۲ عنصر است. هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و... فلزات روی، مس، آهن، نیکل و... و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.

تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲ ، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است . ایزوتوپ های اورانیوم تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند . مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود . ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند . غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد که فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم ۲۳۵ و اورانیوم ۲۳۸ که در هر دو ۹۲ پروتون وجود دارد ولی اولی ۱۴۳ و دومی ۱۴۶ نوترون دارد. اختلاف این دو فقط وجود ۳ نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ کاملاً یکسان هستند و برای جداسازی آنها از یکدیگر حتماً باید از خواص فیزیکی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده کرد. ایزوتوپ اورانیوم ۲۳۵ شکست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شکست را تبدیل به انرژی الکتریکی می نمایند. در واقع ورود یک نوترون به درون هسته این اتم سبب شکست آن شده و به ازای هر اتم شکسته شده ۲۰۰ میلیون الکترون ولت انرژی و دو تکه شکست و تعدادی نوترون حاصل می شود که می توانند اتم های دیگر را بشکنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی کنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود . ساختار نیروگاه اتمی به طور خلاصه چگونگی کارکرد نیروگاه های اتمی را بیان کرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم . طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران ۱۵ نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶ ، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد . نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از : 1- ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است . عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم ۲۳۵ عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷ عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد . در واقع ورود نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ۲۰۰ میلیون الکترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است. که اگر به صورت زنجیره ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد . اما اگر تعداد شکست ها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست، اتم بعدی شکست حاصل کند شرایط یک نیروگاه اتمی به وجود می آید . به عنوان مثال نیروگاهی که دارای ۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانیوم ۲۳۵ در روز در این نیروگاه شکسته می شود و همان طور که قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم ۲۳۸ اورانیوم ۲۳۹ به وجود می آمد که بعد از دو بار انتشار پرتوهای بتا (یا الکترون) به پلوتونیم ۲۳۹ تبدیل می شود که خود مانند اورانیوم ۲۳۵ شکست پذیر است . در این عمل ۷۰ گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی که شکسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده کردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شکست را به کمک واکنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد . 2- نرم کننده ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت ) به عنوان نرم کننده نوترون به کار برده می شوند . 3- میله های مهارکننده : این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآکتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآکتور می شوند. اگر این میله ها کار اصلی خود را انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت رآکتور چند برابر شده و حالت انفجاری یا دیورژانس رآکتور پیش می آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند . 4- مواد خنک کننده یا انتقال دهنده انرژی حرارتی : این مواد انرژی حاصل از شکست اورانیوم را به خارج از رآکتور انتقال داده و توربین های مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل رآکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. این مواد می توانند گاز CO2 ، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند . انواع راکتور

راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(2 تا 4 درصد اورانیوم 235) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک (LWR ) شناخته می شوند. راکتورهای WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز - گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR ( راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد ) LWGR( راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند .

به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت " وستینگهاوس" و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمی PWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن 1954در "آبنینسک" نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال 1956 در انگلستان آغاز گردید. تا سال 1965 روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه 1966 تا 1985 جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای 1972 تا 1976 که بطور متوسط هر سال 30 نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه 1970 می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند. پس از دوره جهش فوق یعنی از سال 1986 تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه 4 راکتور اتمی شروع به ساخت می شوند .

کشورهای مختلف در تولید برق هسته ای روند گوناگونی داشته اند. به عنوان مثال کشور انگلستان که تا سال 1965 پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه 1960 تنها 17 نیروگاه اتمی داشت در طول دهه های 1970 و 1980 بیش از 90 نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هسته ای در مقایسه با تولید برق از منابع دیگر انرژی در امریکا کاملا قابل رقابت می باشد. هم اکنون فرانسه با داشتن سهم 75 درصدی برق هسته ای از کل تولید برق خود درصدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی(73درصد)، بلژیک(57درصد)، بلغارستان و اسلواکی(47درصد) و سوئد (8/46 درصد) می باشند. آمریکا نیز حدود 20 درصد از تولید برق خود را به برق هسته ای اختصاص داده است .

گرچه ساخت نیروگاههای هسته ای و تولید برق هسته ای در جهان از رشد انفجاری اواخر دهه 1960 تا اواسط 1980 برخوردار نیست اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته ای می باشند. طبق پیش بینی های به عمل آمده روند استفاده از برق هسته ای تا دهه های آینده همچنان روند صعودی خواهد داشت. در این زمینه، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته ای خواهند بود. در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از 25000 مگا وات درصدر کشورها قرار دارد. پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند. استفاده از انرژی هسته ای در کشورهای کاندا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد .

غنی سازی اورانیم سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است. سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال ۱۸۶۴ کشف کرد. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم


دانلود با لینک مستقیم


تحقیق ساختار نیروگاه های اتمی جهان

دانلود مقاله تعیین کرنش های سلولی توسط نیروی ریز اتمی ترکیبی و نمونه سازی المان محدود

اختصاصی از رزفایل دانلود مقاله تعیین کرنش های سلولی توسط نیروی ریز اتمی ترکیبی و نمونه سازی المان محدود دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله تعیین کرنش های سلولی توسط نیروی ریز اتمی ترکیبی و نمونه سازی المان محدود


دانلود مقاله تعیین کرنش های سلولی توسط نیروی ریز اتمی ترکیبی و نمونه سازی المان محدود

بسیاری از قسمت ها محیط های مکانیکی خود را سازگار می نمایند:استخوان بندی جدید در پاسخ به دسته ی تمرینی عالی ترکیب شده اند.قلب و عروق به صورت روان و یکنواخت ماهیچه ها را با فشار پمپ وفق می دهند.ساختار ماهیچه ها خود را با مراحل تمرینی وفق می دهند.آشکار کننده ها و سازگار کننده ها با کشش های مکانیکی که توسط سلول های تشکیل شده ی این اعضا اعمال می شوند.

            بسیاری از آزمایش ها به صورت وا ضح سلول های آشکار کننده و وفق دهنده با تحریک مکانیکی مشخص شده اند که از یک نوع طرح برای اعمال شبیه سازی مکانیکی استفاده می کنند:سلول های  خاتمه گر برای 24ساعت به جریان سیال می پیوندند که آشکار کننده ی جریان را پیوسته و یکنواخت به صف در می آورد ونوسان فشار برشی سیال می تواند کلسیم زود گذر از یک نوع از انواع سلول های آورده وآنرا به زیرلایه ی ممتد منطقه ای عمودی به مسیر کشش واگذار می کنند کندرسایت تناوب فشار هیدرواستاتیکی که افزایش می یابد را به ترکیب سنتز واگذار می نمایند.سلولهای استخوان ساز غلظت کلسیم سلول های ورودیشان را افزایش می دهد وقتی که ضربه ی ریز یا کشش از طریق میکروب های مغناطیسی پیروی می کند.شرح عامل موجود سلول های خاتمه گر وقتی که از پیچ میکروبی پیروی می کنند افزایش می یابد.روش عملی شبیه سازی مکانیکی که می توان به طور کلی به دو مقوله تقسیم می شود:آن دسته که شبیه سازی را فراترازهمه ی سلول  اعمالمی کنند(زیر لایه ی ممتد.برش سیال. تناوب فشار هیدرواستاتیکی) وآن دسته که به تنهایی بخش کوچکی از بدنه ی سلول را شبیه سازی می کنند(ضربه ی ریز.پیچ میکروبی.کشش میکروبی).نتایج بدست آمده با یک سیستم کششی در مقام مقایسه مشکل تر است با نتایج بدست آمده از روش دیگر.

            درحقیقت.سلول ها بیشتر شبیه تغییر شکل پذیری آشکاری هستند که بروی ساختارشان یا در مهندسی ترم کشش (تغییر شکل پذیری در بخش طولی)اعمال می شود.شناخت توزیع کشش در سطح سلول ها نتیجه را قادر می سازد تا از تکنیک های کششی متفاوت که با یکدیگر مقایسه می شوند. ونتیجه ی ساختار فیزیکی آنها آنالیز می شود. تکنیک های معمول مهندسی ازجمله محاسبه ی دینامیک سیال(CFD )یا نمونه سازی المان محدود می تواند برای محاسبه ی فشار برشی نتیجه

شده از جریان سیال یا توزیع کشش لازم برای شبیه سازی مکانیکی مورد استفاده قرار بگیرد.(CFD )سرعت وتوزیع فشار تولیدی را قادر می کند تا  جریان سیال  بالای یک سطح را مشخص کند وبنابراین توزیع فشار برشی می تواند تعیین شود.CFD با موفقیت مورد استفاده قرار گرفته است تا به جریان خون در میان شریان و شاخه های آن رسیدگی شود.باربی فشارهای برشی لازم را که سیال بالای یک سلول خاتمه گر یک لایه که متعلق است به توپوگرافی  که با استفاده از نیروی اتمی ریز بدست آورده شده است(َAFM). جریان یابد.این در رابطه با (FEM ) می تواند سلول های کششی استخراج شده توسط فشار برشی سیال را تسلیم کند.درحقیقت FEM به توزیع کششی لازم اجازه می دهد که به بارگیری و شرایط مرزی اعمال شده روی یک ساختار که به اجزای ماده که شناخته شده و تعیین شده هستند نظم ببخشد.FEM نمونه سازی وتعیین توزیع کشش در همه ی اعضا از جمله استخوان و غضروف یا دیواره ی شریانی را با موفقیت عملی کرده است.اما آن به ندرت در سلول های انفرادی لازم که کمبود دقیق اطلاعات در اجزای مادی سلول ها یا صورت و شکل ظاهری آن عملی شده است.رایمر-مک ردی وهالیستریک سلول جانبی را نمونه سازی کردندکه آن را در شکافی که در کشش اعمال شده در سلول توسط یک تراکم یکنواخت از قالب در هر کدام که جا داده می شود جا می دهند. گولاک و مو و وو دهرزوک یک کندروسایت محاط را در یک قالب کارتیلجینوس نمونه سازی کردند.در همه ی  سه مورد سلول ها  بعنوان کره با اجزای متشابه ویک جور نمونه سازی می شوند.از این رو پتانسیل نامتشابه در اجزای مواد یا توپوگرافی نادیده گرفته می شود.دیگری نمونه ی المان محدود است که روی اجزای مواد سلولی پیش بینی شده از ساختار سایتوکلتال متمرکز شده است.پیش بینی اصلاحات سایتوکلتون یا تکامل تدریجی شکل ظاهری سلول در پاسخ به تنفس ریز لوله ای.اگر چه روش های زیادی از اندازه گیری حجم اجزای مواد سلولی استخراج می شود.فقط AFM  قادر است مقطع طولی سه بعدی از سطح سلول را که در قرارداد بالا با توزیع اجزای موادشان با همدیگر بدست آورد.

            دراین مطالعه ما AFM رابا FEM وCFD ترکیب می کنیم که نتیجه ی توزیع کشش از تکنیک های شبیه سازی مکانیکی همه ی سلول های معمول محاسبه می شود.تجارب بدست آمده از مقطع طولی سلول ونقشه های بدست آمده از اجزای مواد توسط (AFM)نمونه ی المان محدود را در سه بعد منعکس می کنند.سری های مختلف مرزها و یادآوری شرایط اعمال شده به نمونه ی سلول که در آزمایش های کششی(زیر لایه ی ممتد.برش سیال و فشار هیدرواستاتیکی متناوب) شبیه سازی شده است .آزمایش های میکروسکوپی معمول(کشش وپیچش ریز.کشش ریز لوله ای) که روی یک  حجم زیر سلولی کوچک نمونه سازی شده است و توزیع کشش که با سنجش آزمایش های کششی همه ی سلول ها محاسبه شده است.سازگاری سلول ها به فشارهای مکانیکی توسط افزایش میزان الاستیک سلول و امتحان آنچه روی توزیع کشش اثر می گذارد شبیه سازی می شود.پارامترهای مختلف مربوط به روش های  شبیه سازی شده متنوع می باشند واثرهای آن ها روی توزیع کشش امتحان شده است.علاوه بر این.ماازاین نمونه سازی ها استفاده می کنیم تا حجم کشش نتیجه شده ازآزمایش ها توسط گروه های دیگررا محاسبه کنیم ومقایسه ی اندازه ی کشش ها که نیازاست یک کشف مکانیکی گزارش شده وجواب سلولی پایین دست آغاز شود.

شامل 50 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله تعیین کرنش های سلولی توسط نیروی ریز اتمی ترکیبی و نمونه سازی المان محدود

گزارش کار طیف سنجی نشر اتمی شعله ای

اختصاصی از رزفایل گزارش کار طیف سنجی نشر اتمی شعله ای دانلود با لینک مستقیم و پر سرعت .

گزارش کار طیف سنجی نشر اتمی شعله ای


گزارش کار طیف سنجی نشر اتمی شعله ای

 

گزارش کار و تحقیق بسیار کامل آزمایش طیف سنجی نشر اتمی شعله ای که به بررسی اندازه گیری مقدار پتاسیم و کلسیم موجود در آب شهری با روش نشر اتمی شعله ای می پردازد.

Word + Pdf

17 صفحه!

 

این گزارش کار شامل مقدمه و تئوری کامل، روش های کلی در اندازه گیری اتم ها، طیف سنجی جذب اتمی، طیف سنجی فلورسانس اتمی، نشر شعله ای، روش های اتم سازی، دستگاهوری طیف سنجی نشر اتمی، روش آزمایش، شرح عملی آزمایش به همراه داده ها، محاسبات و نمودارها، نتیجه گیری و پاسخ به سوالات مربوطه و ... می باشد.


دانلود با لینک مستقیم


گزارش کار طیف سنجی نشر اتمی شعله ای

انرژی اتمی

اختصاصی از رزفایل انرژی اتمی دانلود با لینک مستقیم و پر سرعت .

انرژی اتمی


انرژی اتمی

 

فرمت فایل: word(قابل ویرایش)تعداد صفحات22

مقدمه
در حال حاضر انرژی اتمی یکی از منابع مهم انرژی بسیاری از کشورهای جهان است . با وجود این ، تا سالهای اخیر اکثر مردم دربارة آن بی اطلاع بودند در اواخر جنگ جهانی دوم زمانی که دو بمب اتمی بر روی شهرهای ناکازاکی و هیروشیما در ژاپن انداخته شد ، برای اولین بار مردم پی بر قدرت انرژی اتمی بردند. از آن زمان تا به امروز از انرژی اتمی فقط به منظور تولید نیرو استفاده شده است ، هرچند که سلاحهای اتمی متعددی در جهان وجود دارند.
جمعیت جهان با سرعت رو به افزایش است و مردم نیز مایلند سطح زندگی شان بهتر شود و توقعاتشان بیشتر شده است. این دو عامل دلیل نیاز روز افزون به انرژی است. این انرژی موارد استفاده های فراوان دارد ، از جمله راه انداختن ماشین آلات کارخانه ها ، تولید گرما و نیروی برق ، درحالی تقاضای جهانی انرژی رو به افزایش است ، منابع سوختهای فسیلی (زغال سنگ ، نفت و گاز ) در حال اتمام هستند. در حال حاضر ، سوختهای فسیلی تنها منابع اصلی تامین کنندة انرژی جهان هستند و باید به دنبال منابع دیگر انرژی بود ، یکی از منابع جایگزین که قبلا کشف شده است انرژی اتمی می باشد.

 


انرژی هسته ای
اولین استفاده از انرژی هسته ای در جنگ جهانی دوم بعمل آمد و از آن پس امکان تهیه انرژی مفید به مقیاس وسیع از این منبع مورد نظر بوده و از آن غالبا بعنوان پشتوانه ای در برابر مسئله اتمام منابع فسیلی انرژی یاد می شود. در عین حال که انرژی هسته ممکن است بر منابع فسیلی مزایایی ( از نظر آلوده تر کردن هوا ) داشته باشد استفاده از آن مستلزم یک تکنولوژی پیشرفته و پیش بینی های لازم برای مسائل ایمنی است . در استفاده از انرژی هسته ای حرارت حاصله از شکستن اتمها که تحت کنترل انجام می گیرد به مصرف تولید بخار می رسد. عمل شکستن اتمها و تولید حرارت در راکتورها انجام می گیرد که سوخت آنها اورانیوم (و یا توریم) است. حرارت سپس بوسیله یک یا چندین عامل واسطه که تحت فشارهای مختلف هستند به بخار تبدیل شده و توربینهای مولد برقی را می چرخانند. در راکتورهای معمولی که سوخت آنها اورانیوم 235 است مقدار کمی از سوخت ( در حدود یک درصد ) به پلوتونیوم تبدیل شده و در این تبدیل تفاوت به صورت انرژی آزاد می شود. این عمل سبب می شود که یک تن سوخت اورانیوم که در این راکتورها «سوخته» می شود معادل سوختن پنجاه هزار تن زغال سنگ الکتریسیته تولید کند. در حال حاضر حدود 16000 یعنی پنج درصد انرژی الکتریکی مصرفی در امریکا از انرژی هسته ای تولید می شود که راکتورهای فوق الذکر را بکار گرفته اند. این مقدار در حدود یک درصد انرژی کل مصرفی امریکا است . راکتورهای دیگری که در آن کشور تحت ساختمان هستند دارای ظرفیتی در حدود 54000 خواهد بود و مقدار 80000 دیگر نیز یا در مرحله طرح یا سفارش هستند بطوریکه در پایان اتمام آنها مجموعا 150000 الکتریسیته از انرژی هسته ای در آن کشور تهیه خواهد شد که تخمین زده می شود در سال 2000 قسمت قابل توجهی از انرژی الکتریکی امریکا را تامین کند. (مثلا 25 تا 30 درصد) . در انگلیس نیز حدس زده می شود تا اواخر قرن حاضر راکتورهای هسته ای تا حدود 25% الکتریسیته مورد احتیاج را که در آن موقع در حدود 40000 تخمین زده می شود تامین کند. گرچه به نظر می رسد که انرژی هسته ای ممکن است راه حل عمده ای برای بحران انرژی باشند . ولی باید توجه داشت که موفقیت عمده انرژی هسته ای می تواند در تولید انرژی الکتریکی بوده که فقط جزئی از انرژی لازم برای احتیاجات آینده است. و حتی تولید الکتریسیته به مقدار وافر از این منبع مستلزم پیمودن راهی است که کاملا کوبیده و صاف نشده است. بعلاوه علیرغم بوجود آمدن راکتورهای مولد مسئله سوخت اتمی لازم هنوز بطور کامل حل نشده است . دیگر اینکه تکنولوژی قادر باشد راکتورهای اتمی نوعی سم ایجاد کند . که نه از راه انشقاق (fissin) که در راکتورهای فعلی بکار می رود بلکه از راه Fuslan انرژی اتمی را آزاد کند. سوخت لازم (مثلا دیوتریوم) برای چنین راکتورهایی مقدار زیاد در طبیعت موجود است. علیرغم این اشکالات برای جایگزینی و تکمیل احتیاجات انرژی در عرض نیم قرن آینده شاید بتواند تا حدود بیست تا سی درصد مصرف انرژی الکتریکی را از انرژی هسته ای تامین کرد.


دانلود با لینک مستقیم


انرژی اتمی