رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جزوه آموزشی ریخته گری نیمه جامد

اختصاصی از رزفایل جزوه آموزشی ریخته گری نیمه جامد دانلود با لینک مستقیم و پر سرعت .

جزوه آموزشی ریخته گری نیمه جامد


جزوه آموزشی ریخته گری نیمه جامد

این فایل حاوی جزوه آموزشی ریخته گری نیمه جامد می باشد که به صورت فرمت PDF در 23 صفحه در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

 

فهرست
مقدمه
تاریخچه
مهمترین خواص نیمه جامدها
انواع روشهای ریخته گری نیمه جامد
چگونگی فرایند نیمه جامد
مزیتهای رئوکستینگ نسبت به تیکسو کستینگ
تفاوت شمش با شمشال
توضیح در مورد غیر دندریتی شدن در فرایند رئوکستینگ
پارامترهای موثر بر غیر دندریتی شدن در فرایند رئوکستینگ
انواع روشهای غیر دندریتی کردن

 

تصویر محیط برنامه


دانلود با لینک مستقیم


جزوه آموزشی ریخته گری نیمه جامد

دانلود تحقیق کامل درمورد ریخته گری (درس پوشش فلزات)

اختصاصی از رزفایل دانلود تحقیق کامل درمورد ریخته گری (درس پوشش فلزات) دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد ریخته گری (درس پوشش فلزات)


دانلود تحقیق کامل درمورد ریخته گری (درس پوشش فلزات)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :38

 

بخشی از متن مقاله

پوشش های تبدیلی

اصطلاح ((پوشش تبدیلی )) به پوششهایی گفته می شود که از طریق واکنش لایه های اتمی سطح فلزات با آنیونهایی که از وسط فلزات ایجاد می شوند .

بنابراین فرایند تشکیل پوشش تبدیلی یک فرایند خوردگی کنترل شده ای است که به طریق مصنوعی ایجاد شده است و نهایتاً برروی سطح فلز لایه ای را ایجاد می کند . این لایه اتصال محکمی با فلز پایه دارد و عملاً در آب و محیط واسطه نامحلول است و عایق الکتریکی خوبی می باشد .

یکی از فرایند های پوششهای تبدیلی فرایند کروماته کردن است که در دو دهه اخیر پیشرفت و گسترش قابل توجهی پیدا کرده است .

کروماته کردن

اصطلاح ((کرماته کردن)) به عملیات شیمیایی و الکترو شیمایی فلزات و پوششهای فلزی محلولهایی گفته می شود که در آنها اسید کرمیک ، کرمات یا دی کرمات باشد . نتیجه چنین عملیاتی ایجاد پوشش محافظ تبدیلی شامل ترکیبات کرم سه ظرفیتی و شش ظرفیتی بر روی سطح فلز است .

خواص جلوگیری از خوردگی فلزات توسط کروماتها به خوبی شناخته شده است . با اضافه کردن مقادیر کمی از این ماده به سیستمهای دارای آب در گردش سطح فلزات را پوشش می دهد و در نتیجه از خوردگی آنها جلوگیری می کند.

پوششهای کرماته در محصولات صنایع ماشین سازی ، الکتریکی ، الکترونیکی ، ارتباطات راه دور و صنایع موتوری خودکار به کار می رود . آنها نیز با جایگزین کردن برخی فلزات معین معین به جای فلزاتی که طول عمر کمتری دارند نقش مهم کاربردی دارند . به عنوان مثال ، می توان از روی کرماته شده که جایگزین فلزات با پوشش کادمیم شده اند نام برد .

مهمترین اهداف استفاده از فلزات کرماته شد عبارتند از :

الف ) افزایش مقاومت به خوردگی فلز یا پوششهای محافظ فلزی ، در حالت اخیر احتمالاً به طولانی شدن زمان ظهور اولین آثار خوردگی بر روی فلز پایه و فلز پوشش منجر خواهد شد .

ب ) کاهش خسارات سطحی ناشی از آثار انگشت (خراشهای سطحی)

ج) افزایش میزان چسبندگی رنگ و سایر پوششهای آلی .

د) رنگ پذیری و یا پذیرش بهتر سایر پوششهای تزئینی .

روشهای عملی کرماته کردن بر اساس نوع عملیات به دو دسته زیر تقسیم می شوند :

الف ) روشهای شیمیایی که فقط شامل فرو بردن قطعات در محلولهای کرماته است .

ب ) روشهای الکتروشیمیایی که شامل فرو بردن قطعات در محلول و اعمال جریان الکتریکی از یک منبع خارجی است .

ج) فرایندی که یک لایه کرماته فشرده برروی سطح تمیز فلزی ایجاد می کند به نحوی که در نهایت به شکل پوشش واقعی در می آید .

د) فرایندی که با استفاده از انواع دیگر پوششها از فلز محافظ می کند . به عنوان مثال پوششهای اکسیدی یا فسفاتی که نوع فسفات آن در فصلهای مربوط به اکسیداسیون و فسفاته کردن بحث شده است .

فرایند کرماته کردن را می توان بهصورت دستی ، نیمه خودکار یا تمام خودکار انجام داد .

توسعه این فرایند به دلیل سهولت عمل و زمان کم آن قابلیت دسترسی همگانی و اقتصادی بودن مواد شیمیایی و بالخره خواص منحصر به فردی است که این نوع پوشش برخوردار است .

 بر اساس نظریات و ستچستر مقاومت به خوردگی پوششهای کرماته بهتر از نوع فسفاته آن است . موک نیز که تحقیقاتی در زمینه خواص حفاظتی پوششهای کرماته و مقایسه آن با نوع فسفاته انجام داده ، به نتایج مشابهی رسیده است .

در اولین مرحله ، مقاومت به خوردگی و سایر خواص پوششهای کرمی بستگی تام به فلز پایه (فلزی که پوشش روی آن انجام می گیرد دارد . چگونگی سطح فلز  روشهای آماده سازی مختلف کرماته کردن و احتمالاً عملیات اضافی در زمینه پوشش کرم دادن (مثلاُ کاربرد پوشش روغن یا رنگ) دارد.  در حالی که از روشهای الکترو شیمیایی برای ایجاد پوشش کرماته استفاده می شود ، چگالی جریان نقش مهمی ایفا می کند).

فرایند کروماته کردن فلزات خاص

اولین بار فرایند کرماته نمودن در سال 1924 و برای فلز منیزیم به کار رفت . پوشش کرماته که در آن زمان به دست آمد مشخصاً یک پوسته بسیار باریک بود و به علت کاربرد روشهای خاص رنگ پوسته قهوه ای یا زیتونی بود و عالباً از محلولهای اسیدی سدیم دی کرمات یا بدون افزایش نمکهای فلزی معین برای منظورهای خاصی استفاده می شد .

بین سالهای 1924تا 1936 چندین روش برای کرماته کردن منیزیم ، روی ، کادمیم ، مس و آلیاژهای آن عرضه شد . از بین این روشها روشی که در آن از یک محلول خاص برای دستیابی به پوشش روشن بر روی کادمیم استفاده می شد کاربردی بیشتری داشت .

بدون شک فرایندی که در ان حمام دی کرمات و اسید سولفوریک به کار  می رود ، ارزشمند ترین فرایند است . این فرایند که در سال 1936 ابداع شد ، به فرایند کرونک شهرت یافت . پوشش کرماته ای که از روش بر روی ZN و Cd به دست آمد ، رنگی شبیه زرد یا قهوه ای تیره داشت .

پیشرفتهای بعدی در این زمینه به کاربرد محلولهایی منجر شد که شامل اسید کرمیک و سولفاتها بودند که جهت به دست آمدن سطح و ظاهر روشن سپس در محلولهای اسیدی یا الکلی دقیق شسته می شدند .

در دوران جنگ جهانی دوم روشی ابداع شد که پوشش کرماته به رنگ سبز زیتونی برروی روی و کادمیم به دست آمد . این پوشش در مقایسه با نمونه مات متمایل به قهوه ای که سابقاً تهیه شده بود در مقابلخوردگی مقاومت ببیشتری از خود نشان می داد . علاوه بر ایجاد پوشش سبز زیتونی تهیه پوششهایی به رنگ سیاه و رنگهای دیگر از طریق رنگ کردن پوشش زیتونی نیز امکانپذیر شد .

هنوز بسیاری از فرایند های قدیمی کرماته کردن روی وکادمیم که نیاز به استفاده از محلولهای اسید سولفوریک و دی کرمات با اصطلاحات مختصری دارد ، قابل استفاده اند .

محلولهایی با بنیان کرمات کردن روی و کادمیم که نیاز به استفاده از محلولهای اسید سولفوریک و دی کرمات با اصلاحات مختصری دارد قابل استفاده اند .

محلولهای با بنیان کرمات نیز جهت آماده سازی سطح مس و آلیاژهای قابل استفاده اند . اما در ابتدافقط به صورت حمامهای براق کننده به کار می رفت ولی همزمان به علت تشکیل یک لایه نازک کرمات بر روی سطح ، مقاومت به خوردگی را افزایش می دهد . در حال حاضر برای حالتهایی که ظاهر و سطح قطعه حساسیت چندانی ندارد لایه های ضخمیتر پوشش که سبب محافظت بیشتری در مقابل خوردگی می شون نیز مورد توجه قرار دارد .

تهیه کنندگان فلز منیزیم عمدتاً خود مستقیماً این فلزات را با کرمات پوشش می دهند . در طی سه دهه گذشته فرایندهای متعددی جهت کرماته کردن منیزیم پیشنهاد شده که فقط معدودی از آنها اقتصادی اند . امروزه در اغلب این فرایندها از حمامهای کرماته استفاده می کنند .

در سالهای اخیر پوشش دادن آلومینیوم با محلولهای حاوی کرماته کاربرد گسترده ای پیدا کرده است .

در دو فرایند جالب که از همان اوایل به کار می رفته است از ترکیبهای کرم شش ظرفیتی استفاده می شود و اینها را نمی توان با دقت در زمره عملیاتی که در انها محلولهای کرماته به کار می رود به شمار اورد . اولین فرایند عملیاتی است که در آن آلومینیوم درمحلولهای قلیایی قرار می گیرد ، که به منظور رسیدن به پوششهای اکسیدی خاکستری متعاقباً بر روی آن عملیات حفاظتی انجام می شود و سپس در محلولهای پتاسیم دیکرمات قرار می گیرد . دومین فرایند استفاده از محلولهای حاوی اسید کرمیک و اسید فسفریک است که از اجزای اصلی اند که به ایجاد پوششهای فسفاته - کرماته به رنگ سبز روشن منجر می شوند .

اولین فرایند کرماته نمودن AL به صورت نمونه در سطح تجارتی در سال 1950 به کار گرفته شد . پوشش آن در مقابل خوردگی مقاومت بسیار زیادی داشت و سادگی روش کار به گسترش این فرایند کمک شایاینی کرد .

شیوه تشکیل پوششهای کرماته

پوششهای کرماته از اسید کرمیک یا محلولهای کرماته که مواد افزودنی دیگری ندارند ، تهیه می شوند . غالباً اسیدهای آلی یا غیر آلی ، عامل محرک و پیش برنده ای به شمار می روند . مراحل تشکیل پوشش کرماته شامل اکسیداسیون سطح فلز در محلول کرماته است که توام با انتقال یونهای فلز پایه و افزایش تدریجی هیدروژن به محلول است . هیدروژن آزاد شده سبب می شود که بخشی از کرمهای شش ظرفیتی به صورت کرمهای سه ظرفیتی احیا شوند . تجزیه لایه ای از فلز پایه باعث افزایش PH  در سطح فلز       می شود . افزایش PH تا اندازه ای است که کرمهای سه ظرفیتی به صورت یک لایه ژلاتینی هیدروکسید کرم در سطح رسوب می کنند . در این لایه ژلاتینی مقادیر معینی از کرم شش ظرفیتی از محلول و ترکیبهای که از یونهای فلز کرماته تشکیل شده به شکل به هم چسبیده وجود دارد .

همان طور که قبلاً اشاره شد برای آغاز فرایند کرماته کردن و به منظور دستیابی به خواص معینی در پوششهای کرماته چه آی یا غیر آلی در محلول کرماته به غیر از ترکیبهای کرم شش ظرفیتی باید برخی افزودنیها نیز وجود داشته باشد . از جمله این افزودنیها به موراد زیرمی توان اشاره کرد: اسید سولفوریک ،کلرایدها ،‌فلورایدها ، نیتراتها ، استاتها ، فرماتها ، همچنین بسیاری مواد دیگر که غالباً تحت امتیاز خاصی قرار دارند نیز اضافه می شود.

رنگ و ضخامت پوشش کرماته بر اساس شرایط عمل متفاوت است . خصوصاً ترکیب شیمیایی ، PH دمای حمام پوشش ومدت پوشش  و مدت عملیات آثار تعیین کننده ای در آنها دارند .

مهمترین عامل PH محلول کرماته است که اثر تعیین کنندهای د رتشکیل پوشش کرماته دارد . لایه پوششی کرماته باید بعد از تجزیه سطح لایه فلزی که واکنشهای سطحی روی آن انجام می گیرد تشکیل شود . یونهای فلزی ایجاد شده در واکنش شرکت دارند .

 مهمترین عامل PH محلول کرماته است که اثر تعیین کننده ای در تشکیل پوشش کرماته دارد . لایه پوششی کرماته باید بعد از تجریه سطح لایه فلزی که واکنشهای سطحی روی آن انجام می گیرد تشکیل شود. یونهای فلزی ایجاد شده در واکنش شرکت دارند .

تکنولوژی کرماته کردن

 پوشش کرماته را می توان به طور شیمیایی (از طریق غوطه وری در محلول کرماته کردن ) یا از طریق الکتروشیمیایی (قطعه ای که قرار است کرماته شود در زمانی که درمحلول غوطه ور است به عنوان یک الکترود عمل کند) ایجاد کرد. در هر دو حالت قطعاتی که قرار است پوشش داده شوند از طریق قلاب و چنگک در محلول آویزان می شوند و یا قطعات کوچک را در سبدهایی مخصوص می ریزند و در محلول غوطه ور می کنند.

غیر از فرایند غوطه وری ، محلول کرماته را می توان از طریق پاشیدن یا برس زدن بر روی سطح اعمال کرد . به هر حال برخی مولفین تاکید دارند که پوشش دادن از طریق پاشش همیشه کاملاً رضایت بخش نیست زیرا ثابت نگه داشتن ترکیب شیمیایی محلول مشکل است و ممکن است لایه پوشش از ضربات جریان محلول آسیبهای مکانیکی ببیند .

فرایند کرماته کردن را می توان دستی ، نیمه خودکار یا تمام خودکار انجام داد .

تنوع گسترده عملی ترکیبهای محلول بهره گیری فرایند از دستگاههای خودکار را عملی می سازد .مثلاً هنگامی که قطعات آبکاری شده کرماته می شوند ، ترکیب شیمیایی محلول برای دستیابی به مدت مناسب عملیات برای کلیه مراحل عملی به راحتی اصلاح می شود .

اصول روشهایی که شامل غوطه وری هستند در نوع عملیاتی با روشهای الکتروشیمیایی اختلاف ندارند بجز در اعمال منبع جریان .

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد ریخته گری (درس پوشش فلزات)

دانلود تحقیق کامل درمورد صنعت ریخته گری (خاک)

اختصاصی از رزفایل دانلود تحقیق کامل درمورد صنعت ریخته گری (خاک) دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد صنعت ریخته گری (خاک)


دانلود تحقیق کامل درمورد صنعت ریخته گری (خاک)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :33

 

بخشی از متن مقاله

انواع مختلفی از خاک در جهان وجود دارند که بسیاری از آنها  در صنعت ریخته گری آزمایش شده اند اما سه نوع اصلی که در این صنعت بکار می روند شامل کائولن (خاک نسوزط)، مونت موریلونیت (بنتونیت) و ایلیت می باشند. مونت موریلونیت مهم ترین کانی بنتونیت بود9 که از یک ساختار سه لایه صفحه ای تشکیل شده است. 2 لایه از تتراهدلا سیلیسییم – اکسیژن و یک لایه دی اکتاهدرال یا تری اکتاهدرال هیدوکسیل آلومینیم (گیبسیت). لایه میانی‌ آلومینیوم از اکتاهدرالی با یک اتم آهن که توسط شش واحد  هیدلوکسیل محاصره شده تشکیل گردیده است. به شکلهای 1 و 2 مراجعه کنید.

خاک های سدیمی، کلسیمی . و بنتونیت های فعال شده دراین خانواده قرار گرفته و به میزان فراوانی در صنعت ریختهگری استفاده می شوند. کائولن از دو لایه ساختاری تشکیل  شده است یک لایه اکتاهیدال آلومینیم و یک لایه تتراهیدال الومینیم و یک لایه تتراهدرال سیلیسیم. لایه سیلیسیم از یک اتم سیلیسیم و 4 اتم اکسیژت تشکیل شده است.

خاک نسوز، خاک چینی، کائولینیت  و خاک رس دراین خانواده قرار می گیرد. در صنایع مدرن بریخته گری بندرت از این خاکها استفاده می‌شود.

ایلیت خاکی با نسوزندگی ضعیف است. این خاک غالبا در ماسه های طبیعی دیده شده اما در ماسه های مصنوعی هیچگاه افزوده نمی‌شود.

مونت موریلونیت دارای یک صفحه میانی هیدروکسیل آلومینیوم است که بین دو لایه اکسید سیلیسیم آلومینیم است که بین دو لایه اکسید سیلیسیم قرار گرفته است. بخشی از آلومینیم  توسط منیزیم جانشین شده که یک حالت عدم تعادلی یونی را به وجود می آورد.  تعادل یونی را می توان با افزودن سدیم، کلسیم یا منیزیم بدتس آورد که این عمل تبادل یونی نامیده می‌شود.

در صنایع جدید ریخته گری ، برخی خاکهای مورد استفاده از نوع تبادل یونی (فعال شده)  هستند. دو نوع مونت موریلونیت مهم که در آن صنعت ریخته گری بکار می‌روند عبارتند از :

الف) بنتونیت سدیم که با خاصیت تورم زیاد شناخته می‌شود.

ب) بنتونیت کلسیمی که تورم پذیری کلسیمی هستند که با نمکهای سدیم نظیر کربنات سدیم فرآوری شده تاند تا خواص خاک بهبود یابد.این فعال سازی بودن آنکه باعث کاهش استحکام خشک گردد، موجب بهبود پایداری خواص شده و عیوب ناشی از انبساط را کاهش می دهد.

عمل فعال سازی می‌تواند به صورت «تر» یا «خشک» انجام شود  اما نتایج بررسیها نشان می دهند که فعال سازی «تر» خواص بهتری را بدست می دهد.

بنتونیت های سدیمی، کلسیمی و خاک های تبادل بودن کره، هر یک خواص منسبی دارند. انتخاب نوع خاک به خواص مورد نیاز و مسائل اقتصادی ازتباط دارد. در صنعت ریخته گری فولاد، برای ریخته گری  چدن و فلزات غیر آهنی درماسه‌تر معمولاً از بنتونیت کلسیمی یا بنتونیت فعال شده یا مخلوطی از ینتونیت سدیمی/کلسیمی استفاده می‌شود. هر کارخانه ریته گری باید نیازمندیهای خود را شندهته و بر آن اساس نوع خاک مناسب را انتخاب کند. ازیک خاک یا مخلوطی از خاک ها  می توان در اغلب موارد برای دست یابی به خواص مورد نظر استفاده کرد. در فرآیندهای قالب گیری ماشینی با فشار بالا، این انتخاب اهمیت بیشتری داشته و معمولاً برای بهبود عملکرد، افزودنی دیگرنیز به ماسه اضافه می شوند.

مقاله 2: چسب های زرین نوع فوران ابتدا در سال 1958 به عنوان سیستم =سب فوران بدون پخت اسید کاتالیز شده معرفی شدند. دو سال بعد صنعت اتومایتو این رزین ‌ها را اصلاح کرد تا به کاتالیزورهای نمکی اسید عمل کنند تا در ماهیچه های Hotbox استفاده شود سپس در اوایل دهه 80 (زرین های فوران به عنوان بزرگترین سیستم  فروش بدون پخت تبدیل شدند.

چسب های فوران بدون پخت (سردگیر ) در تهیه قالبهای ماسه ای در ریخته گری قطعات چدنی و فولادی کاربرد زیادی پیدا کرده اند. در این پژوهش متغیرها موثر در سخت شدن چسب شامل:  درصد کاتالیست، رطوبت ماسه، اثر دمای محیط و فاصله زمانی بین سنجش استحام و زمان قالبگیری مورد بررسی قرار گرفته است. نهایتا شرایط بهینه قالب گیری چسب فوران با کاتالیست اسیدتولوئن سولفونیک به دست آمد. در این شرایط استحکام فشاری ماسه برابر  400، عبود گاز آن AFS 130، وز مان عمر مفید این ماسه برابر 20 دقیقه تعیین گردید.

چسب های فوارن بدون پخت (سردگیر) ر تهیه قالب های ماسه ایدر ریخته‌گری قطعات چدنی فولادی کاربرد زیادی پیدا کرده اند. سیستم چسبهای فورانی بدون پخت (No- boke) دراواخر سال 1950 به صنعت ریخته گری معرفی شد  و از سال 1960 تاکنون به طور گسترده ای در صنایع ریخته گری کشورهای جهان استفاده می‌شود. پایه چسبهای فورانی. الکل فورقوریل با فرمول شیمیایی C4H3OCH2OH است که از فورفورال تهیه می‌شود. فورفورال نیز خود از ت0حول بقایای محصولات غذاییی همچون غلات،  پوست جو ، تفاله نیشکر و غیره بدست می آید. درجه چسب فوران با استفادهاز مقدار آب و نیتروژن و میزان فورفوریل الکل پایین برای ریخته گری و ماهیچه سازی چدن و آلیاژهای کم و یا بع عبارتی با فورفوریل الکل زیاد برای ریخته گری و ماهیچه سازی قطعات فولادی بکار برده می شوند. یکی از انواع خاص چسبهایفورانی سردگیر چسبهای بدون نیتروژن است. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود ولی از طرفی وجود آن در بسیاری از موارد با تشکیل گاز، باعث ایجاد عیوب ریخته گری می‌شود که اغلب از نوع تخلخل و حفره ای بوده و خطرناک می باشند. نیتروژن همچنین ممکن است تخلخل های زیر سطحی ایجاد کند. برای بکار بدن این چسب در قالب گیری، ابتدا ماسه را با یک کاتالیست یا سخت کننده مخلوط می کنند و سپس چسب فوران را را آن مخلوط می نمایند. انواع کاتالیستهای معمول این چسب به ترتیب افزایش واکنش دهندگی عبارتند از: اسید فسفریک و یا مخلوطی از اسید فسفریک و اسید سولفوریک، آریل سولفونیکها مثل اسید تولئون سفلونیک(TSA) با فرمول شیمیای CH3So3H و اسید بنزن سولفونیک (‌BSA) با فرمول SO­3 H  اسید فسفریک ضعیف تین اسید بین اسیدهی مذکوراست.

معمولاً مقداراسید فسفریک  لازم جهت افزودن به مخلوط حدود 40 الی 60 درصد وزنی چسب فوران می باشد. بعد از اسید فسفریک امروزه بیشتر از اسیدها آروماتیک TSA و پس از آن BSA  که قوی تر است  استفاده می‌شود. معمولاً وقتی که ماسه مصرف شده (غیر تازه) باشد یا حالت قلیایی داشته باشد استفاده از BAS  مطلوب تر است. افزودن این دواسیددرحدود 20 الی 25 درصد چسب به مخلطو کاسه کافی است. به طول کلی مکانیزم سخت شده چسب در چسبهای سرد فورانی که با اسید سخت می شوند به صورت پلبیمریزاسیوناست. در واقع با وجود یک اسید قوی، زنجییزه های الکل فورفرویل به صورت فیلمی ذرات ماسه را می پوشاند و باعث چسبیدن این ذرات ب9ه هم می شوند. واکنش پلیمریزاسیون این چسب از نوع تراکمی است و محصول جنبی داشته و به صورت زیر می باشد.

این واکن گرمازا است وحرارات  ناشی ازآن  باعث تسریع پلیمریزاسیون به صولت لایه لایه تا بخشهایمرکزی می‌شود. آب تولید شده از واکنش پلیمریزاسیون برای تکمیل گیرش رزین باید بخیر شود. به همین دلیل گیرش رزین از سطح خارجی قالب به سمت داخل اتفاق می افتد. سرعت واکنش تحت تاثیر عواملی چون دمای  ماسه و نوع ماسه، نوع مخلوط کنو سرعت مخلوط کردن ، ترکیب چسب وننع و مقدار عنصر فعال کننده مصرفی قرار دارد. افزایش دمای محیط تا C 0  30  موجب افزایش سرعت‌گیرش و رسیدن به استحکام بالا می‌شود. افزایش رطوبت نیز در دمای ثابت باعث کم شدن سرعت گیرش می‌شود. دمای ماسه تأثیر بسزایی را روی فرآیند پلیمریزتاسیون دارد. درمحدوده دمایی C 0 16 تا C 0 38 استحکامهای مناسب تری بدست می آید. در ضمن هر چه روطوبت نسبی هوا بالاتر رود به دلیل کاهش سرعت تبخیر حاضر در کاتالیست و آب تولید شده از وانش تراکمی‌، استحکام کاهش می‌یابد.

یکی از مزایای فآیند قالب گیری با این چسب نیاز به تجهیزات و ماشین آلات پیچیته است. از مزایای دیگر این چسب استحکام بالا، سادگی  مخلوط ماسه‌، دستیابی به دقت ابعادی بالا  و کاهش هزینه های مربوط به ماشین کاری، کنترین میزان واکنش درفل مشترک ماسه و فلز و عدم نیاز به مهارت قالب گیری و ماهیچه سازی می باشد. همچنین از معایب آن نیز می تان با پایین بودنسرعت تولید، قیمت بالای چسب، بدبو بودن میحط کاری آن واحتمال ابتلا به امراض پوستی و صنعتی و نیاز به استفاده از ماسه  با کیفیت بالا اشاره کرد.

مداول ترین نوع ریخته گری نوع قالب ماسه ای است که دو نوع مخلوط پایه‌ای برای آن وجود دارد.

ماسهتر (green Sand)  و مساه سردگیر (no – bake sand) از (Synthctic resins) استفاده می کنند.

عمیلایت بدون پخت : قالب ها یا ماهیچه هایی که به وسیله رزیل هایی که ماسه ها را درهوا به هم می چسبانند تهیه شده اند گفته می‌شود. این پروسته (airset ) موسوم است چون قالب ها برای سخت شدن در شرایط محیط قرار داده می شوند.

شادی معمولاً پس از عملیات زینتر، دانه بندی می‌شود و برای قالبگیری با ماسه خشک بمنظور ریبختهگری قطعات ریختگی فولادی به کار می رود.

انواع چسب ها (Types of binder)

تقسیم بندی چسب ها از دو دیدگاه صورت می گیرد؛ یکی از نققطه نشر ماهیت و طبیعت جسب ها و دیگری از نظر نحوه انجماد و چگونگی  خودگیری و سفت شدن (Setting) چسب ها، از نقطه نظر ماهیت، چسبها به دو گروه چسب های آلی ‍(Organec)  و غیر آلی (Inorganic) و یا به دو دسته قابل  حل در آب ( Warer – Soluble) یا آبدار (Hydrous) و غی قابل حل در آب (Warer – Insolube) یا غیر آبدار (Anhydrous) تقسیم بندی می شوند.

ازنقطه نظر نحوه اینجماد و چگونگی سفت شدن و خودگیری، چسب ها به سه گروه برگشت ناپذیر (Irreversible) ، میانه (UNTermediarte) و برگشت پذیر (Reversible) تقسیم می شوند.

چسب های آبدار رو جسب های غیر آبدار نباید با همدیگر مخلوط شوند زیرا هر زمان که این عمل صورت پذیرد، استحکام مخلوط ماسه در حالت تر  و در حالت خشک کاهش می یابد و بخصوص اگر چسب آبدار، خاک رس باشد کاهش استحکام شدیدتر است.

یک چسب مناسب  باید ذرات ماسه را بیکیدگر اتصال دهد و استحکام قابل و ماسه ماهیچه را درحالت تر و خشک افزایش  دهد و شرایط زیر را فراهم سازد؛

  • درخلال تهیه مخلوط هی قالبگیری با ماهیجه بطور یکنواخت برروی سطوح ماسه

پایه گسترده شود.

  • درهر دو حالت تر و خشک، استحکام کافی مخلوط را فراهم سازد.
  • شکل پذیری مناسب در مخلوط ایجاد نماید بطوریکه مخلوط قادر باشد همه بخش های قالب را پر کند.
  • کمترین جسبندگی را به سطح مدل و جعبه ماهیچه داشته باشد  تا انجام فرآیند فالبگیری و ماهیچه سازی امکان پذیر باشد.
  • امکان خشک کردن قابل و ماهیچه رافراهم سازد و در خلال مونتاژ  قالب و نگهداری ماهیجه رطوبت جذب نکند.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد صنعت ریخته گری (خاک)

دانلود تحقیق کامل درمورد ریخته گری فولاد - ذوب فلزات

اختصاصی از رزفایل دانلود تحقیق کامل درمورد ریخته گری فولاد - ذوب فلزات دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد ریخته گری فولاد - ذوب فلزات


دانلود تحقیق کامل درمورد ریخته گری فولاد - ذوب فلزات

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :132

 

بخشی از متن مقاله

مقدمه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

1-1- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند.

در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.

1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند.

1-3- اصول متالورژی سوپر آلیاژها

سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل می‌شود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمی‌شود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین می‌گردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب می‌شود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژه‌ای صورت نمی‌گیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژه‌ای مانند رسوب‌ها افزایش می‌یابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش می‌دهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف می‌شود.

تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق می‌افتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطاف‌پذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3  9/8 می‌باشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.

چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش می‌دهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.

دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتی‌گراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.

1-4- بعضی از ویژگیها و خواص سوپر آلیاژها

1- فولادهای معمولی و آلیاژهای تیتانیوم در دماهای بالاتر oC540 دارای استحکام کافی نیستند و امکان خسارت دیدن آلیاژ در اثر خوردگی وجود دارد.

2- چنانچه استحکام در دماهای بالاتر (زیر دمای ذوب که برای اکثر آلیاژها تقریباً 1371-1204 درجه سانتیگراد است) مورد نیاز باشد، سوپر آلیاژهای پایه نیکل انتخاب می‌شوند.

3- از سوپر آلیاژهای پایه نیکل می‌توان در نسبت دمایی بالاتری (نسبت دمای کار به دمای ذوب) در مقایسه با مواد تجاری موجود استفاده کرد. فلزات دیرگداز (نسوز) نسبت به سوپر آلیاژها دمای ذوب بالاتری دارند ولی سایر خواص مطلوب آنها را ندارند و به همین خاطر به طور وسیعی مورد استفاده قرار نمی‌گیرند.

4- سوپر آلیاژهای پایه کبالت را می‌توان به جای سوپر آلیاژهای پایه نیکل استفاده کرد که این جایگزینی به استحکام مورد نیاز و نوع خوردگی بستگی دارد.

5- در دماهای پایین‌تر وابسته به استحکام مورد نیاز، سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت کاربرد بیشتری پیدا کرده‌اند.

6- استحکام سوپر آلیاژ نه تنها مستقیماً به ترکیب شیمیایی بلکه به فرآیند ذوب، آهنگری و روش شکل‌دهی، روش ریخته‌گری و بیشتر از همه به عملیات حرارتی پس از شکل‌دهی، آهنگری یا ریخته‌گری بستگی دارد.

7- سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت ارزان‌تر هستند.

8- اکثر سوپر آلیاژهای کار شده برای بهبود مقاومت خوردگی دارای مقداری کروم هستند. مقدار کروم در آلیاژهای ریخته در ابتدا زیاد بود، اما به تدریج مقدار آن کاهش یافت تا عناصر آلیاژی دیگری برای افزایش خواص مکانیکی سوپر آلیاژهای دما بالا، به آنها افزوده شوند. در سوپر آلیاژهای پایه نیکل با کاهش کروم مقدار آلومینیوم افزایش یافت، در نتیجه مقاومت اکسیداسیون آنها در همان سطح اولیه باقی می‌ماند و یا افزایش می‌یابد، اما مقاومت در برابر انواع دیگر خوردگی کاهش می‌یابد.

9- سوپر آلیاژها مقاومت در برابر اکسیداسیون بالایی دارند اما در بعضی موارد مقاومت خوردگی کافی ندارند. در کاربردهایی مانند توربین هواپیما که دما بالاتر از oC760 است سوپر آلیاژها باید دارای پوشش باشند. سوپر آلیاژها در کاربردهای طولانی مدت در دماهای بالاتر از oC649 مانند توربین‌های گازی زمینی می‌توانند پوشش داشته باشند.

10- فن‌آوری پوشش‌دهی سوپر آلیاژها بخش مهمی از کاربرد و توسعه آنها می‌باشد. نداشتن پوشش به معنی کارآیی کم سوپر آلیاژ در دراز مدت و دماهای بالا است.

11- در سوپر آلیاژها به ویژه در سوپر آلیاژهای پایه نیکل بعضی از عناصر در مقادیر جزئی تا زیاد اضافه شده‌اند. در بعضی از آلیاژها تعداد عناصر کنترل شده موجود تا 14 عنصر و بیشتر می‌تواند باشد.

12- نیکل، کبالت، کروم، تنگستن، مولیبدن، رنیم، هافنیم و دیگر عناصر استفاده شده در سوپر آلیاژها اغلب گران بوده و مقدارشان در طی زمان متغیر است.

1-5- کاربردها

کاربرد سوپر آلیاژها در دماهای بالا بسیار گسترده و شامل قطعات و اجزاء هواپیما، تجهیزات شیمیایی و پتروشیمی است. موتور F119 که یکی از آخرین موتورهای هواپیماهای نظامی است، نشان داده شده است. دمای گاز در بخش داغ موتور (ناحیه خروجی موتور) ممکن است به دمایی بالاتر از oC 1093 برسد. با استفاده از سیستمهای خنک کننده دمای اجزاء فلزی کاهش پیدا می‌کند و سوپر آلیاژ که توانایی کار کردن در این دمای بالا را دارد، جزء اصلی بخش داغ به شمار می‌رود.

اهمیت سوپر آلیاژها در تجارت روز را می‌توان با یک مثال نشان داد. در سال 1950 فقط 10 درصد از کل وزن توربین‌های گاز هواپیما از سوپر آلیاژها ساخته می‌شد، اما در سال 1985 میلادی این مقدار به 50 درصد رسید.

در جدول 1-3 فهرستی از کاربردهای جاری سوپر آلیاژها آورده شده است.باید خاطر نشان ساخت، که همه کاربردها به استحکام در دمای بالا نیاز ندارند. ترکیب و مقاومت خوردگی سوپر آلیاژها، مواد استانداردی برای ساخت وسایل پزشکی بوجود آورده است. سوپر آلیا ژها همچنین کاربردهایی در دماهایی بسیار پایین پیدا کرده‌اند.

فصل دوم

انتخاب سوپر آلیاژها

2-1- کلیات

در جدولهای 2-1 و 2-2 داده‌هایی درباره تنش گسیختگی سوپر آلیاژها آورده شده است. با مراجعه به شکل 1-1 می‌توانید یک نگاه کلی بر روی تنش گسیختگی سوپر آلیاژها داشته باشید. جمع‌آوری اطلاعات بیشتر به داده‌های ارائه شده، از طرف سازندگان و نیز دسترسی به اطلاعات فنی منتشر شده بستگی دارد. به استثناء محصولات نورد شده مانند ورق و میله در بقیه محصولات قطعاً نمی‌توان انتظار داشت، که ترکیب شیمیایی بدست آمده، از آزمون در آزمایشگاه‌های مختلف با یکیدگر برابر و یکسان باشند. ریز ساختار تنها عامل مهم در تعریف و تعیین خواص مکانیکی سوپر آلیاژهاست. تغییر ریز ساختار به معنی تغییر خواص و نتایج آزمون است. بدون توجه به ریز ساختار و شرایط آزمون نتایج بدست آمده، از آزمایش ترکیب شیمیایی از نوع آماری خواهند بود. دنبال کردن و نتیجه گیری از داده‌ها در هر آلیاژی کاری دشوار است.

2-2- شکل سوپر آلیاژها

سوپرآلیاژها به صورت ریخته (معمولاً عملیات حرارتی شده یا تحت فرآیندهای دیگر قرار گرفته) و یا کار شده (اغلب عملیات حرارتی شده یا تحت فرآیندهای دیگر قرار گرفته) هستند. محصولات ریخته ممکن است به صورت شمش برای ذوب مجدد، یا کار مجدد، مانند آهنگری و یا به شکل محصول نیمه تمام مشابه محصول نهایی باشند. محصولات کار شده اغلب، در حد واسط شکل نهایی مانند، محصولات نورد شده شامل میله، ورق، سیم، صفحه و غیره قرار دارند.

یکی از مسائل مهم متالوژی سوپرآلیاژها در قرن بیستم، تولید شکل نهایی یا نزدیک به آن محصولات کار شده بود. (اشکال ریخته نهایی به روش ریخته‌گری دقیق چندین دهه است که تولید می‌شوند). در نتیجه تلاش‌های به عمل آمده، فهم کامل فرآیندهای کار گرم و کار سرد، با استفاده از رایانه و به کار بردن فن‌آوری‌های جدید، طراحان را قادر ساخت که شکل محصولات را تا حد ممکن به شکل نهایی نزدیک گردانند.

2-3- دمای کاری سوپرآلیاژها

همانگونه که گفته شد، سوپر آلیاژها عموماً برای کار در دماهای بالاتر از oC 540 و کمتر از نقطه ذوب که معمولاً بالاتر از oC1204 است، مناسب هستند.

آلیاژهای پایه نیکل و پایه آهن- نیکل عموماص دارای حد دمایی در حدود oC816 هستند. در دماهای بالاتر از این حد از آلیاژهای ریخته استفاده می‌شود. استحکام اکثر سوپر آلیاژها توسط رسوب فاز ثانویه افزایش پیدا می‌کند، و حد بالائی محدوده دمائی استفاده از آلیاژ تحت تاثیر نوع پایه آلیاژ (پایه نیکل یا پایه آهن- نیکل) مقدار و نوع رسوب و شکل آلیاژ (ریخته یا کار شده) است.

امروزه در صنعت سوپر آلیاژها کاملاً مشخص است که از چه نوع آلیاژ ویژه‌ای برای کار در یک دمای مشخص استفاده شود. به عنوان مثال اکثر سوپر آلیاژهای پایه نیکل و پایه آهن- نیکل کار شده، فقط در دماهای oC704-649 مورد استفاده قرار می‌گیرند. محدوده دمایی بعضی از سوپر آلیاژها در دمای زیر oC540 و اکثراً کمتر از oC427 شروع می‌شود. سوپر آلیاژهای کار شده در توربین‌های گازی استفاده می‌شوند، زیرا آلیاژهای تیتانیوم برای این کار مناسب نیستند. آلیاژهای ریخته در بیشترین دما می‌توانند کار کنند و از آنها در موتورهای توربین استفاده می‌شود.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد ریخته گری فولاد - ذوب فلزات

پاورپوینت-ریخته گری گریز از مرکز- در 33اسلاید-powerpoin-ppt

اختصاصی از رزفایل پاورپوینت-ریخته گری گریز از مرکز- در 33اسلاید-powerpoin-ppt دانلود با لینک مستقیم و پر سرعت .

پاورپوینت-ریخته گری گریز از مرکز- در 33اسلاید-powerpoin-ppt


پاورپوینت-ریخته گری گریز از مرکز- در 33اسلاید-powerpoin-ppt

­­اساساً دو نوع ریخته گری گریز از مرکز وجود دارد .گریز افقی که حول محور افقی خود میچرخد و گریز عمودی که حول محور عمودی خود میچرخد .از ماشین ریخته  گریز از مرکز افقی عموماً برای تولید لوله، تیوپ، بوش، غلاف های سیلندری و قطعات استوانه ای یا تیوپ مانند که شکل ساده ای دارند (مطلب بخش پیش ریخته گری گریز از مرکز افقی را ببینید )استفاده میشود. دامنه ی کاربرد ماشین ریخته گری گریز از مرکز عمودی وسیعتر است. قطعاتی که استوانه ای ویا حتی متقارن نیستند می توانند با استفاده از ریخته گری گریز از مرکز عمودی تولید شوند. فرآیند ریخته گری گریز از مرکز از قالب دواری استفاده می کند تا مذاب را به طور یکسان داخل محفظه قالب کند. انجماد جهت دار قطعه ای چگالتر با خصوصیات فیزیکی عالی تری نسبت به فرآیند ریخته گری ثقلی تولید می کند.

قطعات تولیدی به روش ریخته گری گریز از مرکز،توسط ریختن فلز مذاب داخل قالب دوار تولید می شوند. نیروی گریز از مرکز ناشی از دوران قالب فلز مذاب را به داخل حفره (حفرات) قالب هل می دهد تا اینکه در زیر فشار ممتد فلز مذاب منجمد شود. قطعات ریختگی استوانه ای عموماً مناسب تر است تا با استفاده از ریخته گری گریز از مرکز تولید شوند. قطعات استوانه ای تولید شده در قالب های دائم به روش ریخته گری گریز از مرکز دارای نقطه تسلیم بالاتر و خواص مکانیکی بالاتری نسبت به قطعات تولید شده در ریخته گری ثقلی هستند. اقتصادی ترین روش در تولید قطعات سیلندری یا استوانه ای با کیفیت عالی با توجه به نقاط تسلیم قطعه، هزینه تمیز کاری و هزینه قالب، ریخته گری گریز از مرکز می باشد.

قطعات تولیدی گریز از مرکز می توانند با استفاده از واژه "هموژن" بهتر تعریف شوند، یعنی اینکه دارای خواص کاملاً یکنواخت در تمامی جهات باشند. که این مطلب در مورد فورجینگ صادق نیست. با استفاده از مزایای عالی به وجود آمده ناشی از نیروی گریز از مرکز قالب دوار، قطعات ریختگی با کیفیت بالا و بدون عیب به دلیل چگالی بالا و به دور از گاز های اکسیدی و سایر آخالهای غیر فلزی می توانند تولید شوند. مزیت اقصادی روش ریخته گری گریز از مرکز حذف و یا به حداقل رساندن راه گاه و تغذیه ها می باشد.

تمام فلزاتی که توسط ریخته گری ثقلی تولید می شوند می توانند با استفاده از روش ریخته گری گریز از مرکز نیز تولید شوند. از قبیل فولاد های کربنی و آلیاژی، فولاد های پُر آلیاژ مقاوم به خوردگی و مقاوم در برابر حرارت، چدن خاکستری، چدن داکتیل و چدن نشکن، چدن های پر آلیاژ، فولاد های زنگ نزن، فولاد نیکل دار، آلیاژهای آلومینیوم، مس منیزیم، آلیاژ های پایه نیکل و کبالت و آلیاژهای تیتانیم. غیر فلزات نیز با استفاده از روش ریخته گری گریز از مرکز می توانند تولید شوند، از قبیل: سرامیک ها، شیشه ها، پلاستیک ها و تقریباً هر ماده ای که بتوان آن را ذوب کرده و به صورت مایع درآورد.

 قالب های ماسه ای، نیم ریژه و قالب های دائم میتوانند در فرآیند ریخته گری گریز از مرکز به کار روند. انتخاب نوع قالب به شکل قطعه، میزان کیفیت مورد نیاز و تعداد قطعه مورد نیاز بستگی دارد.

فرآیند های ریخته گری گریز از مرکز

سه نوع ریخته گری گریز از مرکز وجود دارد:

1- ریخته گری  گریز از مرکز حقیقی            (rue centrifugal casting)

2- ریخته گری  نیمه گریز از مرکز             (semi centrifugal casting)

3- ریخته گری گریز از مرکزمرکز گرا  (centrifuge centrifugal casting)

ریخته گری گریز از مرکز حقیقی:

ریخته گری گریز از مرکز حقیقی برای تولید قطعات ریختگی لوله ای یا سیلندری ، توسط چرخش قالب حول محور خودش استفاده میشود . این فرآیند میتواند عمودی ویا افقی باشد ونیاز به ماهیچه مرکزی کاملاًٌ برطرف میشود . قطعه ریختگی تولید شده به این روش دارای یک حفره عمیق استوانه ای با شعاع درونی مشخص بدون توجه به شکل یا پیکربندی قطعه خواهد بود. حفره قطعه ریختگی تولید شده بدون شیب ویا با شیب خواهد بود بسته به نوع محور دوران افقی یا عمودی استفاده شده .قطعات ریختگی تولید شده در مدل فلزی دارای انجماد جهت دارحقیقی از بیرون قطعه به سمت مرکز دوران هستند . انجماد جهت دار منجر به تولید قطعاتی با کیفیت عالی و بدون عیب انقباضی، که بزرگترین دلیل معیوب شدن قطعات در ریخته گری ماسه ای است خواهد شد.

ریخته گری نیمه گریز از مرکز :

برای تولید قطعات ریختگی با پیکربندی که به طورکامل از شکل قالب در تمام وجوه، داخل و بیرون توسط چرخیدن قالب و قطعه حول محور خودش نشئت می گیرد استفاده می شود. محور چرخش عمودی عموماً در این روش استفاده می شود. اگر که قطعه ریختگی دارای حفراتی باشد، از ماهیچه ممکن است استفاده شود. انجماد جهت دار باطراحی صحیح راهگاه به مانند ریختگری ثقلی قابل حصول است. قطعات ریختگی که تولیدآنها به روش ثقلی مشکل است، از نظر اقتصادی می توانند با این روش تولید شوند. به دلیل اینکه در ریختگری گریز از مرکز فلز مذاب تحت فشاری چندین برابر ریختگری ثقلی به قطعات تغذیه می شود. که این مطلب باعث افزایش نقطه تسلیم قطعه به مقدار قابل توجهی (85%-90%) و پر کردن تمام حفرات و منافذ قالب به طور کامل و در نتیجه تولید قطعه ای با کیفیت عالی و به دور از حفرات و منفذ در جوش خواهد شد.

در مقایسه با ریخته گری ثقلی قطعات ریختگی با جداره نازک میتوانند با این روش تولید شوند. قطعاتی از این دسته شامل پولک دنده ، فولی چرخ قرقره، چرخها، پره ها، روتور های موتورهای الکتریکی.

 

 

ریخته گری گریز از مرکز مرکزگریز:

ریخته گری گریز از مرکز مرکز گریز دارای وسیع ترین زمینه ی کاربرد هستند. در این روش حفرات قطعات ریختگی حول محور چرخش درست مانند پره های چرخ اتومبیل مرتب میشوند. بنابراین می توان ریخته گری چند گانه با این روش انجام داد. نیروی گریز از مرکز فشار مورد نیاز فلز مذاب را درست مانند ریخته گری نیمه گریز از مرکز تأمین میکند. این روش ریخته گری برای تولید بدنه شیرآلات، توپی ها، ماهک ها، دیوار کوب ها وحوزه وسیعی از قطعات صنعتی گوناگون استفاده می شود.

طراحی قالب

تکنیک راهگاه. عملی بودن ریخته گری یک قطعه با استفاده از ریخته گری نیمه گریز از مرکز یا گریز از مرکز مرکز گریز توسط پیکر بندی قطعه مشخص می شود . سیستم راهگاهی ریخته گری گریز از مرکز معمولاً یک راهگاه تنها  را  به خدمت می گیرد، که عملکرد یک راهگاه و تغذیه را با هم ترکیب می کند. نیروی گریز از مرکز اثر عملکرد مذاب رسانی تغذیه را تقویت می کند و قطعه ای با فلز چگالتر تولید می کند، در غیر این صورت چنین نتیجه نمی توانست به دست آید. شکل1 نشان می دهد که قالب ریخته گری گریز از مرکزی که با سرعت محیطی 305  متر بر دقیقه () در قطر بیرونی  قطعه می چرخد ارتفاعی تغذیه ای هم ارز با 9 متر (ft30) خواهد داشت .که این هم ارز فشاری برابر kPa 703  (psi 102) است. نمونه قطعه ریختگی ساکن ارتفاع تغذیه ای کمتر از 3ر0 متر دارد. نیروی گریز ازمرکز عمل مذاب رسانی بهتری نسبت به فشار مایع (فشار هیدرو استاتیک فلز در منبع تغذیه ) در ریخته گری ثقلی فراهم می کند. بنا براین مذاب رسانی فلز مذاب به درون و از میان قسمت های باریک تر و سبک تر قالب به درون قسمت های سنگین تر قالب امکان پذیر می شود وخیلی راحتر از ریختگری ثقلی است.

پیکر بندی برخی از قطعات ریختگی که ذاتاً انجماد جهت داری تولید نمی کنند می توانند توسط برخی از تکنیک های قالب گیری به انجماد جهت دار تبدیل شوند.  عایق ها، راه گاه های کمکی، مبرد ها یا تغذیه های کور می توانند مورد استفاده قرار بگیرند. هر چند ، قطعه ای که دارای قسمت های غیر یکسانی در ضخامت باشد ممکن است نیاز به روش های پیچیده قالب گیری داشته باشد که هزینه ی قالب گیری و تمیز کاری را افزایش می دهد.

قالب های ماسه ای

وقتی که از قالب های ماسه ای  به خصوص ماسه تر استفاده می شود ، باید که عمل ریختن فلز مذاب به درون قالب در سرعت آهسته دوران- قالب شروع شود. وقتی که قسمتی از قالب یا تمام آن ریخته شد، سرعت چرخش تا حد مورد نیاز افزایش پیدا می کند، تا از فرسایش حفرات قالب توسط فلز مذاب جلو گیری کند یا کاهش دهد. قالب همواره باید تحت گردش ریخته شود، حتی اگر سرعت گردش قالب فقطrpm 5 (دور بر دقیقه )باشد. این مطلب توزیع صحیح فلز داغ و سرد در قالب را برای عملکرد بهینه تغذیه رسانی تأیید می کند.

قالب های ماسه ای تر : قطعات ریخته گری گریز از مرکز می توانند در قالب های ماسه ای تر یا خشک تولید شود. وقتی که از قالب های ماسه تر استفاده می شود، درجه (ترجیحاً گرد) مورد نیاز است. از سه روش می توان برای محکم کردن قالب ماسه ای تر به میز ماشین گریز استفاده کرد.

در روش اول، دو تا پین محکم


دانلود با لینک مستقیم


پاورپوینت-ریخته گری گریز از مرکز- در 33اسلاید-powerpoin-ppt