عنصر اساسی در توانایی ما برای مشاهده، ساخت، و در بعضی موارد بهکاراندازی دستگاههای بسیار کوچک فراهم بودن پرتوهای ذرهای بسیار متمرکز، مشخصا" از فوتونها، الکترونها و یونها میباشد.
قانون عمومی حاکم بر اثر ذرات برخوردی، بیان میدارد که چنانچه تمایل به تمرکز یک پرتو از ذرات به یک نقطه با اندازه مشخص داشته باشیم، طول موج وابسته به ذرات برخوردی باید کوچکتر از اندازه قطر نقطه مورد نظر باشد. روابط حاکم بر انرژی و بالطبع طول موج این ذرات بیان کننده آن است که اتمها و بالطبع یونها مناسب ترین کاندیداها برای این آزمایشات میباشند (جدول 1).
انرژیهای مختلف E 0 (eV) طول موج ذره (m)
106 105 104 103 102 10 1
6-10*24/1 5-10*24/1 4-10*24/1 3-10*24/1 2-10*24/1 6-10*24/1 24/1 فوتونها
7-10*7/8 6-10*70/3 5-10*22/1 5-10*88/3 4-10*23/1 4-10*88/3 3-10*23/1 الکترونها
8-10*87/2 8-10*07/9 7-10*87/2 7-10*07/9 6-10*87/2 6-10*07/9 5-10*87/2 پروتونها
جدول 1: طول موج ذرات (m) در انرژیهای مختلف Eo(eV)
با نگاهی به جدول 1 مشاهده میکنیم که فوتونهای در ناحیه مریی (eV5/3 – 6/1) برای تمایز تا یک مایکرون و تشخیص اندازههای تا چند مایکرون مفید هستند. استفاده از فوتونهای انرژی بالاتر یعنی در ناحیه UV تا محدود اشعه ایکس (eV1000 – 5) قدرت تمایز پذیری بیشتری را حاصل مینماید. اما با افزایش بیشتر انرژی (بزرگتر از (eV) 1000) به علت افزایش اثر پخش شدگی (scattering) فوتونها کاربرد خود را در محدوده طول موجهای کوتاه به سرعت از دست میدهند.
در مورد الکترونها که معمولا" در محدوده انرژیهای (eV) 105 - 102 به کار میروند، محدودیت طول موج در اندازههای اتمی، که چند آنگستروم (m10-10) میباشد، وجود نداشته اما دوباره محدودیت ناشی اثر بخش شدگی ظاهر میگردد، که توجه به استفاده از الکترونها را کاهش میدهد. در خصوص به کارگیری یونها، با توجه به جدول 1 حتی یونهای با انرژی خیلی کم طول موجی بسیار کوتاهی دارا میباشند، و به علت آنکه دارای اندازهای قابل مقایسه با اندازههای آرایههای اتمی میباشند، حوزه عمل آنها بسیار محدود بوده و دارای پخش شدگی بسیار ناچیز میباشند.
به واسطه همین خصوصیات از یک طرف و امکان دستکاری (manipulation) آسان یونها در میدآنهای الکتریکی و مغناطیسی، توجه به استفاده از یونها در ساختارهای بسیار ریز در قرن جدید و آینده، که قرون ساختارهای بسیار ریز که اصطلاحا" فنآوری نانویی گفته میشود اهمیت مییابد. با توجه به خصوصیات این فنآوری، سیستم تحویل دهنده پرتو یونی باید یونهایی را آماده سازد که به صورت بسیار بالایی متمرکز شده، و دارای همراستایی بسیار خوبی بوده و در نتیجه دارای پراکندگی بسیار کم و تابندگی بالا باشند.
فضای فاز
برطبق مکانیک آماری مشخصه اصلی حرکت هر توزیع یونی در فضای فاز (phase space) که فضای معرف حرکت یونها میباشد، به وسیله مختصات اندازه حرکت (p) و جابهجایی (q) بیان میگردد. برای سیستمهای با سه درجه آزادی (x,y,z) این فضا، فضایی 6 بعدی را با مختصات (px,p y,p z) p iو (q x,q y,q z) q i تشکیل میدهد.در نتیجه برای یک حجم جزیی در فضای فاز داریم؛
dV6 = dq x dq y dq z dp x dp y dp z
و برای تعداد ذرات در این فضا خواهیم داشت:
d6N = f6(q, p, t)dV6
که Vحجم کلی در این فضا و f دانسیته مکانی در فضای فاز (local phase space density)میباشد.
اصل کلی در مکانیک آماری که بیانگر روابط مابین این مختصات و حرکت یونها میباشد به قضیه لیوویل مشهور میباشد(1). برطبق این قضیه دانسیته(f) فضای فاز (phase space density) در طول مسیر یونها نسبت به زمان مقداری است ثابت و در نتیجه توسط شرایط اولیه توزیع یونی تعیین میگردد.
از طرفی بر طبق مکانیک آماری هر توزیع یونی را که در تعادل ترمودینامیکی قرار دارد میتوان توسط مفهوم اساسی دما مشخص نمود (1). در این صورت نتیجه کلی قضیه لیوویل و مفهوم دما، ارتباط دانسیته توزیع یونها در فضای فاز و دمای توزیع یونی میباشد.
phase space density = Constant *exp(E/kT)
به طور خلاصه میتوان بیان داشت که هر چه دمای مجموعهای از یونها پایین تر باشد دانسیته توزیع یونی در فضای فاز بیشتر میگردد (شکل 1).
شکل 1. تصویر توزیع یونی در فضای فاز x و px. (a) توزیع یونی
در شرایط اولیه (b) توزیع یونی پس از سرد شدن
با توجه به ارتباط مابین دانسیته توزیع یونی و پراکندگی و تابندگی و قطر توزیع میتوان اصل ارتباط این مفاهیم را با مفهوم دما به صورت ذیل بیان نمود,
با کاهش دمای توزیع یونی، دانسیته توزیع در فضای فاز افزایش یافته و در نتیجه این امر باعث کاهش پراکندگی (emittance) و افزایش تابندگی (brightness) و کاهش قطر توزیع(distribution diameter) یونی میگردد (نمودار 1).
نمودار 1. بیان کننده جهت افزایش و کاهش پارامترهای مختلف.
حد نهایی این کاهش دما و در نتیجه کاهش پراکندگی و قطر توزیع و افزایش تابندگی را میتوان میعان بوز - انیشتین(2(دانست.
برای ایجاد توزیع یونها در دماهای پایین، ابتدا باید یونها در محیطی که اصطلاحا" به آن تله (trap) میگویند، به دام انداخت. تلههای مغناطیسی که به تلههای پنینگ مشهورند (3)، تلههای رادیوفرکانسی (RFQ)، که تلههای پایولی (Paul trap) نیز نامیده میشوند (4)، محیطهای به دام انداختن یونها را فراهم میسازند. جزییات نحوه عملکرد این تلهها را میتوان در مراجع اشاره شده جستجو نمود، اما به دلیل اهمیت و کاربرد آینده در تهیه پرتوهای نوری مورد استفاده در فنآوری نانویی توجه خاص به تلههای رادیوفرکانسی و هدایت کنندههای یونی رادیو فرکانسی (RFQ ion guide) (چهارقطبی رادیوفرکانسی) که نحوه عملکرد متشابهی با تلههای رادیوفرکانسی دارند مینماییم.
اساسا" تلههای یونی و هدایت کنندههای چهارقطبی، محیطهای ایده آل برای مشاهده و دستکاری (manipulation) یونها را فراهم میسازند. یک تله یونی دارای ساختاری متشکل از سه الکترود، (الکترود حلقه و دو الکترود انتهایی) به شکل هذلولی دوار میباشد که با بهکارگیری پتانسیلهای متغیر(AC) و ثابت (DC) یک میدان چهارقطبی را ایجاد مینماید که قادر است حرکات ذرات باردار در سه بعد محصور نماید (شکل 2).
شکل2. مشخصات الکترودهای یک تله یونی رادیوفرکانسی
هدایت کننده چهار قطبی، از چهار میله موازی بهره میجوید که با اعمال ترکیبی از پتانسیلهای متغیر (AC) و ثابت (DC) یک میدان چهار قطبی ایجاد و قادر خواهد بود حرکات ذرات باردار را در دو بعد محصور و در بعد سوم باعث انتقال ذرات باردار گردد (شکل 3).
شکل 3. مشخصات الکترودهای یک هدایت کننده چهار قطبی
معادلات حاکم بر حرکات ذرات در چهارقطبیها از نوع فرم عمومی معادلات مشهور به ماتیو(Mathieu equation) (1) بوده که دارای راه حلهای استاندارد میباشند.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 38 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلود مقاله بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی