رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ریاضیات

اختصاصی از رزفایل ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 71

 

ریاضیات در گذشته چگونه بود؟

از قدیم ریاضی به دو دسته ی حساب و هندسه تقسیم میشده در یونان بیشتر ریاضیدانان بزرگ به علم هندسه پرداخته اند زیرا در آن زمان که یونانی ها برده داری میکردند علومی را که کاربردی بود تحقیر میکردند زیرا آنها تمام کارها و علوم کاربردی را مختص برده ها می دانستند و چون فکر میکردند که علم هندسه کاربردی ندارد به علم هندسه پرداختند و کشفهای زیادی را در هندسه به دست آوردند ولی در زمینه ی حساب ضعف های زیادی داشتند البته در چند سده ی آخر که بیشتر دانشمندان به اسکندریه رو آورده بودند کارهای اندکی در زمینه ی ریاضیات محاسبهای داشتند.یونانی ها حتی نتوانستند راه ساده ای برای عدد نویسی پیشنهاد کنند و عددها را به کمک حروف الفبا مینوشتند.اما در سده ها و هزاره های پیش از دانش یونان مردمی که در سرزمینهای ایران، بابل، مصر، چین و جاهای دیگر زندگی می کردند از آن جا که به کاربرد های ریاضیات نظر داشتند نه تنها در عدد نویسی، که به طور کلی در زمینه های مختلف ریاضیات محاسبه ای، بسیار پیشرفته بودند و با عددهای کوچک و بزرگ کار می کردند.

 

روابط جالب در ریاضی

1=1×1121=11×1112321=111×1111234321=1111×1111...2121=21×1013838=38×1019393=93×101قانون: هر عددی در 101 ضرب شود در حاصل دوبار تکرار می شود

 

ابتکار گوسدر ریاضیات آنچه که مهم است فکر کردن، استدلال کردن و نتیجه گرفتن است . ریاضیات راهی برای اندیشیدن و روشی برای استدلال و درست فکرکردن است . استدلال وسیلهای است که به کمک آن میتوان از روی اطلاعاتی که داریم حقایقی را کشف کنیم . البته ریاضیات به تجربه و مشاهده نیز مربوط می شود ولی قسمت اعظم آن همان اندیشیدن، استدلال کردن و نتیجه گرفتن است.

گوس ریاضی دان آلمانی ده ساله بود. روزی معلم از دانش آموزان کلاس خواست که مداد و کاغذ بردارند و حاصل جمع اعداد 100 تا1 را به دست آورند. دو دقیقه نگذشته بود که معلم گوس را دید که به کار دیگری مشغول است از او پرسید : چرا مسأله را حل نمی کنی؟ او جواب داد: تمام شد. معلم با ناراحتی گفت: این غیر ممکن است ولی کوس گفت: خیلی هم آسان بود اول چنین نوشتم : 100+99+98+97+...+3+2+1و بعد چنین: 1+2+3+...+96+97+98+99+100و جفت جفت از اول با آخر جمع کردم : 101+101+101+...+101+101+101+101بدین ترتیب 50 تا عدد 101 به دست آوردم که حاصل جمع آنها

میشود 5050=101×50 پس حاصل جمع اعداد 1 تا100 میشود 5050

فیثاغورس . ریاضیدان یونانی که پیش از میلاد مسیح زندگی میکرد

وهم جنین هواداران او برای اعداد اهمییتی خاص عائل می شدند.

آنان اعداد را سرچشمه ی شناخت همه ی پدیده های مادی و معنوی

می دانستند ومی گفتند : چیزی درجهان وجود ندارد که به کمک عدد

قابل بیان نباشد .

فیثاغورس دیدگاههای نادرست راباید سرچشمه ی بسیاری از دیدگاهای خرافی بشرنسبت به عدد دانست که برای نمونه (7) عددی مقدس ویا (13) عددی نحس است.فیثاغورس قضیه ای از هندسه

را که به قضیه ی فیثاغورس است کشف کرد.

اکر ضلع های پهلوی زاویه ی قائمه درمثلث قائم الزاویه را با طول های a وb وترآن را باطول cنشان ذهیم : a*a+b*b=c*c

باتوجه به آنچه گفته شد مثلث قائم الزاویه متساوی الساقینی را درنظر بگیریم که طول هر ضلع پهلوی زاویه ی قائمه ی آن برابر 1 باشد نسبت آنها برابر با طول وتر این مثلث باشد نسبت طبیعی 2و3 یعنی 3 تقسیم بر 2 یا یک ونیم بازهم به تقریب برابر طول وتر ولی از آن بیشتر است . او هر چه کار را ادامه داد به عددی دهدهی نرسید که مجذور آن برابر 2 باشد. این رویداد برای فلسفه ی او مسئله ی زندگی ومرگ بود زیرا نمی توانست یک پاره خط راست ساده راباعدد بیان کند . انجمن های هوادار فلسفه ی او پنهانی بودند . بین خود پدیده ها را به دو قسمت عبارت است از : اول آنها که با عدد قابل بیان هستند این پدیده ها را گویا نامیدند . دوم آنهایی که با عدد غیر قابل بیان هستند که نام گنگ را به آنها دادند . بنابراین طول قطر مربع به ضلع واحد گنگ است . دوستان فیثاغورس این راز که به نتیجه نرسیدن از راه هندسه بود پنهان کردند (نظریه ی نسبت ها ) و (نظریه ی اندازه ناپذیرها) درتمام دوران ریاضیات یونانی ودر بین ریاضیدانان ایرانی مورد بحث بود مانند کرجی وخیام وطوسی و جمشید کاشانی تاحد زیادی آن را حل کردند . وبه صورت امروزی مجموعه ی اعداد حقیقی در آمده است.

تاریخ علم به آدمى یارى مى رساند تا «دانش» را از «شبه دانش» و «درست» را از «نادرست» تشخیص دهد و در بند خرافه و موهومات گرفتار نشود. در میان تاریخ علم، تاریخ ریاضیات و سرگذشت آن در بین اقوام مختلف ، مهجور واقع شده و به رغم اهمیت زیاد، از آن غافل مانده اند. در نظر داریم در این فضاى اندک و در حد وسعمان برخى از حقایق تاریخى( به خصوص در مورد رشته ریاضیات) را برایتان روشن و اهمیت زیاد ریاضى و تاریخ آن را در زندگى روزمره بیان کنیم.

براى بسیارى از افراد پرسش هایى پیش مى آید که پاسخى براى آن ندارند: چه شده است که محیط دایره یا زاویه را با درجه و دقیقه و ثانیه و بخش هاى شصت  شصتى اندازه مى گیرند؟ چرا ریاضیات با کمیت هاى ثابت ادامه نیافت و به ریاضیات با کمیت هاى متغیر روى آوردند؟ مفهوم تغییر مبناها در عدد نویسى و عدد شمارى از کجا و به چه مناسبت آغاز شد؟ یا چرا در سراسر جهان عدد نویسى در مبناى ۱۰ را پذیرفته اند، با اینکه براى نمونه عدد نویسى در مبناى ۱۲ مى تواند به ساده تر شدن محاسبه ها کمک کند؟ ریاضیات از چه بحران هایى گذشته و چگونه راه خود را به جلو گشوده است؟ چرا جبر جانشین حساب شد، چه ضرورت هایى موجب پیدایش چندجمله اى هاى جبرى و معادله شد؟ و… براى یافتن پاسخ هاى این سئوالات و هزاران سئوال مشابه دیگر در کلیه رشته ها، تلاش مى کنیم راه را نشان دهیم، پیمودن آن با شماست…

• پیدایش مثلثات

از نامگذارى «مثلثات» مى توان حدس زد که این شاخه از ریاضیات دست کم در آغاز پیدایش خود به نحوى با «مثلث» و مسئله  هاى مربوط به مثلث بستگى داشته است. در واقع پیدایش و پیشرفت مثلثات را باید نتیجه اى از تلاش هاى ریاضیدانان براى رفع دشوارى هاى مربوط به محاسبه هایى دانست که در هندسه روبه روى دانشمندان بوده است. در ضمن دشوارى هاى هندسى، خود ناشى از مسئله  هایى بوده است که در اخترشناسى با آن روبه رو مى شده اند و بیشتر جنبه محاسبه اى داشته اند. در اخترشناسى اغلب به مسئله   هایى بر مى خوریم که براى حل آنها به مثلثات و دستورهاى آن نیازمندیم. ساده ترین این مسئله  ها، پیدا کردن یک کمان دایره (بر حسب درجه) است، وقتى که شعاع دایره و طول وتر این کمان معلوم باشد یا برعکس، پیدا کردن طول وترى که طول شعاع دایره و اندازه کمان معلوم باشد. مى دانید سینوس یک کمان از لحاظ قدر مطلق برابر با نصف طول وتر دو برابر آن کمان است. همین تعریف ساده اساس رابطه بین کمان ها و وترها را در دایره تشکیل مى دهد و مثلثات هم از همین جا شروع شد. کهن ترین جدولى که به ما رسیده است و در آن طول وترهاى برخى کمان ها داده شده است متعلق به هیپارک، اخترشناس سده دوم میلادى است و شاید بتوان تنظیم این جدول را نخستین گام در راه پیدایش مثلثات دانست. منه لائوس ریاضیدان و بطلمیوس اخترشناس (هر دو در سده دوم میلادى) نیز در این زمینه نوشته هایى از خود باقى گذاشته اند. ولى همه کارهاى ریاضیدانان و اخترشناسان یونانى در درون هندسه انجام گرفت و هرگز به مفهوم هاى اصلى مثلثات نرسیدند. نخستین گام اصلى به وسیله آریابهاتا، ریاضیدان هندى سده پنجم میلادى برداشته شد که در واقع تعریفى براى نیم وتر یک کمان _یعنى همان سینوس- داد. از این به بعد به تقریب همه کارهاى مربوط به شکل گیرى مثلثات (چه در روى صفحه و چه در روى کره) به وسیله دانشمندان ایرانى انجام گرفت. خوارزمى نخستین جدول هاى سینوسى را تنظیم کرد و پس از او همه ریاضیدانان ایرانى گام هایى در جهت تکمیل این جدول ها و گسترش مفهوم هاى مثلثاتى برداشتند. مروزى جدول سینوس ها را تقریبا ۳۰ درجه به ۳۰ درجه تنظیم کرد و براى نخستین بار به دلیل نیازهاى اخترشناسى مفهوم تانژانت را تعریف کرد. جدى ترین تلاش ها به وسیله ابوریحان بیرونى و ابوالوفاى بوزجانى انجام گرفت که توانستند پیچیده ترین دستورهاى مثلثاتى را پیدا کنند و جدول هاى سینوسى و تانژانتى را با دقت بیشترى تنظیم کنند. ابوالوفا با روش جالبى به یارى نابرابرى ها توانست مقدار سینوس کمان ۳۰ دقیقه را پیدا کند و سرانجام خواجه نصیرالدین طوسى با جمع بندى کارهاى دانشمندان ایرانى پیش از خود نخستین کتاب مستقل مثلثات را نوشت. بعد از طوسى، جمشید کاشانى ریاضیدان ایرانى زمان تیموریان با استفاده از روش زیبایى که براى حل معادله درجه سوم پیدا کرده بود، توانست راهى براى محاسبه سینوس کمان یک درجه با هر دقت دلخواه پیدا کند. پیشرفت بعدى دانش مثلثات از سده پانزدهم میلادى و در اروپاى غربى انجام گرفت. یک نمونه از مواردى که ایرانى بودن این دانش را تا حدودى نشان مى دهد از این قرار است: ریاضیدانان ایرانى از واژه «جیب» (واژه عربى به معنى «گریبان») براى سینوس و از واژه «جیب تمام» براى کسینوس استفاده مى کردند. وقتى نوشته هاى ریاضیدانان ایرانى به ویژه خوارزمى به زبان لاتین و زبان هاى اروپایى ترجمه شد، معناى واژه «جیب» را در زبان خود به جاى آن گذاشتند: سینوس. این واژه در زبان فرانسوى همان معناى جیب عربى را دارد. نخستین ترجمه از نوشته هاى ریاضیدانان ایرانى که در آن صحبت از نسبت هاى مثلثاتى شده است، ترجمه اى بود که در سده


دانلود با لینک مستقیم


ریاضیات

ریاضیات

اختصاصی از رزفایل ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

ریاضیات

ریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است.

ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد.

نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد.

ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند.

چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم. ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.

حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است.

در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است. بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد. هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.

دید کلی

پیشرفت ریاضیات به این جا نمی‌رسند که قضیه‌های تازه‌ای روی هم انباشته شود، بلکه این پیشرفت همراه با تغییر کیفی ریاضیات است. ولی این تغییر کیفی از راه شکست و نابودی نظریه‌های موجود به دست نمی‌آید بلکه از راه عمیق‌کردن و تعمیمی نظریه‌های موجود و از راه بوجود آمدن نظریه‌های تعمیم‌دهنده تازه که بر پایه پیشرفت‌های قبلی تدارک دیده شده است) صورت می‌گیرد.

دوره‌های اساسی تاریخ ریاضیات

با یک نظر کلی در تاریخ ریاضی ، می‌توان چهار دوره اساسی که از جنبه‌های کیفی با هم اختلاف دارد تشخیص داد. البته مرزبندی دقیق این دوره‌ها ممکن نیست، زیرا مرزهای اساسی هر یک از آنها کم و بیش به تدریج به وجود آمده است، ولی اختلاف این دوره‌ها و عبور از یک دوره به دوره دیگر به خوبی مشخص است.

نخستین دوره

نحستن دوره ، عبارت از دوره‌ای است که ضمن آن ریاضیات به عنوان یک دانش مستقل و نظری به وجود آمد. ان دوره از زمان‌های باستانی آغاز و به سده پنجم پیش از میلاد پایان می‌پذیرد و این به شرطی است که ریاضیات "خالص" و بستگی منطقی بین قضیه‌ها و اثبات آنها ، زودتر از آن ، در یونان به وجود نیامده باشد (در سده پنجم پیش از میلاد ، حکمهای منظم هندسی مثل "مقدمات" بقراط(= هیپوکراتوس‌) خیوسی به وجود آمد). این دوره ، دوره شکل گرفتن حساب و هندسه است که ما به اندازه کافی آن را بررسی کردیم. در آن زمان ، ریاضیات ، از بستگی مستقیمی که قانون‌های جداگانه و منفرد آن ، با عمل داشتند به وجود آمد، قانون‌هایی که خود زاییده آزمایش‌اند، ولی هنوز به عنوان دستگاه واحدی که به صورت منطقی به هم مربوط باشد تشکیل نشده است. خصلت نظری‌بودن ریاضی که همراه با اثبات منطقی قضیه‌های آن باشد، خیلی به تدریج و متناسب با ماده‌های خام موجود ، به وجود آمد. حساب و هندسه هم از یکدیگر جدا نبود و به طور جدی به هم آمیخته بود.


دانلود با لینک مستقیم


ریاضیات