رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره ژنتیک مولکولی و ژن درمانی در بیماریهای میتوکندریایی

اختصاصی از رزفایل تحقیق درباره ژنتیک مولکولی و ژن درمانی در بیماریهای میتوکندریایی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

مجله دانشکده پزشکی

دانشگاه علوم پزشکی تهران

سال 63، شماره 10، صفحات 791 تا 813 (1384)

ژنتیک مولکولی و ژن درمانی در بیماریهای میتوکندریایی

(مقاله مروری)

چکیده

پس از کشف اولین بیماری مرتبط با اختلال در ژنوم میتوکندری در اواخر سال های 1980 تاکنون، شمـــــــار بیماری های مرتبط با نقص در ژنوم میتوکندریایی رو به افزایش است. با وجود پیشرفت های بی شمار در فهم اختلالات میتوکندریایی چه در سطح ژنتیکی و چه در سطح بیوشیمایی، هنوز درمان رضایت بخشی برای اکثر این بیماران وجود ندارد. بخش عمده ای از این مسئله به این دلیل می باشد که اکثریت این بیماران دارای نقص در زنجیره تنفسی می باشند که مسئول تولید انرژی می باشد و تاکنون هیچ راه فرعی برای رساندن انرژی به این افراد ازطریق مصنوعی شناخته نشده، درنتیجه اکثر توجه ها به سوی ژن درمانی این بیماری ها معطوف بوده است. در حال حاضر، سه راهکار برای ژن درمانی بیماری های میتوکندریایی وجود دارد: مهار تکثیر ژنوم معیوب با استفاده از فناورری آنتی سنس، معرفی ژن سالم به میتوکندری و معرفی ژن سالم به هسته با هدف انتقال محصول پروتئینی ژن سالم به میتوکندری. هر گونه موفقیتی در ژن درمانی میتوکندری بستگی به دردست بودن ناقالین مناسب اختصاصی برای میتوکندری می باشد. در مقاله مروری حاضر با استفاده از منابع جدید و معتبر فراوان به معرفی روش های جدید ژن درمانی و سیستمهای موجود برای رها شدن اختصاصی ژن به میتوکندری پرداخته شده است. ناقلین اختصاصی میتوکندری باید دارای دو ویژگی باشند: باید ژن موردنظر را به طور اختصاصی درمیتوکندری رها کنند وازطرفی نباید آن را درطول آندوسیتوز رها سازند. مدت های طولانی است که می دانیم ترکیبات آمفی فیل دارای مرکز باردار کاتیونی چون ردامین 123و دکوالینیوم دارای تجمع داخل میتوکندریایی می باشند. این ترکیبات دارای چربی دوستی کافی همراه با مرکز باردار مثبت هستند. خاصیتی که موجب کاهش تغییرات انرژی آزاد به هنگام انتقال از محیط آبی به محیط هیدروفوب می شود و به هنگام عبور از غشاء میتوکندری به منظور تجمع در میتوکندری مورد نیاز می باشد. اخیرا ناقلی معرفی شده است که از دکوالینیوم ساخته شده و به همین نام نیز نامیده می شود. مطالعات نشان داده است که این ناقل به ژن موردنظر متصل شده و آن را از حمله نوکلئازها محافظت می کند. با توجه به ویژگی ذاتی این ماده برای تجمع در میتوکندری به نظـــــر می رسد که این ناقل می تواند به منظور رهاسازی اختصاصی ژن ها در میتوکندری استفاده شود.

مقدمه

میتوکندری نخستین بار، حدود یکصد سال پیش توسط Altman مشاهده شد. او آن را اندامگان ابتدایی ( elementary organism) نامید و میتوکندری را اندامگانی بازندگی آزاد که درسلول قرار گرفته است توصیف کرد. جالب توجه است که اغلب شواهد امروزی ، این نظریه را تقویـــت کرده و تأکید دارد که میتوکندری از باکتری های قدیمی مشتق شده است.

میتوکندری نخستین اندامگان سلولی است که ارتباط آن با بیماری های انسانی مشخص شد. بدین ترتیب که Luft و همکاران در سال 1962 شواهدی مبنی بر بدکاری میتوکندری در بیماران دارای متابولیسم بالا ارایه کردند. درپی آن، گزارش های دیگری مبنی برنقص در زنجیره تنفسی و اختلالات ریخت شناسی در بیماران بــا شکل های مختلف سندرم انسفالومیوپاتی ، آن را تأیید کرد. در 1963، Nass و Nass با کشـــــــف غیر منتظره خود، نشان دادند که میتوکندری دارای DNA ویژه به خود (mitochondrial DNA=mtDNA ) می باشد. در سال 1981، توالی بازی کامـل mtDNA انسان و موش گزارش شد. هر چند که پایه ژنتیکی اختلالات میتوکندریایی تاسال 1988 مبهم بود. دراین سال بود که نخستین جهش بیماریزا در میتوکندری گزارش گردید(1).

کشف مذکور موجب شد که پژوهشها بروی بیماری های میتوکندریایی متمرکز شود و شمــار بیماری هایی که درارتباط با نقص در mtDNA هستند به نحو قابل توجهی – به ویژه در خلال دهة اخیر- افزایش یابد. تاسال 1999 بیش از 50 جهش مختلف با جابجایی باز و بیش از 100 بازآرایی مختلف که موجب بیماری های مختلف درانسان می شود در mtDNA مشخص گردیده است(2). این یافته ها، موجب ایجاد یک انقلاب بزرگ وگشایش حوزه ای جدید در پزشکی به نام پزشکی میتوکندری (Mitochondrial Medicine ) شده است(2). پیشرفت های اخیر در زمینه استفاده از الگو های حیوانی، با آسان کردن مطالعات مولکولی، موجب گسترش اطلاعات و در نتیجه ایجاد داروهای جدید و نیز استراتژی های درمانی نو برای بیماری های میتوکندریایی گردیده است(3).

علی رغم پیشرفت در فهم نقص هایmtDNA در سطح بیوشیمیایی و ژنتیکی، هنوز درمان رضایت بخشی برای توده وسیعی از بیماران در دسترس نیست. بخش عمده این فقدان، به دلیل آن است که تقریبا" تمام نقص های mtDNA به نحوی با متابولیسم اکسیداتیو و تولید ATP همراه هستند و درمان آن توسط یک مسیر فرعی و یا از شیوه وارد کردن این متابولیت ( ATP) به بدن در حال حاضر، غیر ممکن به نظر می رسد. این مسئله، درمان های بیوشیمیایی رابرای بیماران محدود کرده و موجب شده است که دانشمندان به ژن درمانی روی آورند. ژن درمانی در میتوکندری، البته هنوز به شکل نظری و در حد آزمایش های اولیه در الگو های حیوانی مطرح است. هر امکانی برای تعویض ژن به استفاده از ناقلین (vectors ) مناسب انتقال دهنده وابسته می باشد که ژن مورد نظر را وارد اندامگان هدف (میتوکندری) کند(3).

اگر چه در سالهای اخیر پیشرفت های بسیاری در این زمینه به دست آمده است، اما ناقلین جهت دار هنوز در دست بررسی و آزمایش هستند.

دراین مقاله با استفاده از ده ها منبع معتبرو جدید، به طور خلاصه به معرفی میتوکندری، خصوصیات آن، بیماری ها و روش های درمانی موجود برای آن که تا به امروز وجود دارد پرداخته شده اســــت. به علاوه، روشهای ژن درمانی موجود، ویژگی ها، مزایا و معایب هر روش توضیح داده شده است.

ویژگیهای میتوکندری

نیای میتوکندری احتمالا، باکتری های قدیمی بوده اند که در شکل انگل درون سلول یوکاریوت های اولیه زندگی می کرده اند. برخی از رخدادهای صورت گرفته درخلال 5/1 بیلیون سال، موجب حذف یا انتقال اغلب ژنوم باکتری به هسته و تغییر انگل درون سلولی به یک اندامگان کامل وابسته به هسته گردیده است (2). هسته، 80% ژنهای زیر واحدهای مسیر فسفریلاسیون اکسیداتیو و تمام ژنهای لازم برای متابولیسم های حد واسط میتوکندری مانند چرخه کربس، اکسیداسیون اسیدهای چرب ، متابولیسم اسیدهای آمینه، زیست زایی (biogenesis ) ویتامین ها و پروتئین های لازم برای میتوکندری را داراســت (4) . در نتیجه چون منشاء آن یک همزیست قدیمی است ژنهای آن با ژنهای هسته، تفاوت هایی در فرایندهایی مانند همانندسازی، رونویسی و ترجمه دارا می باشد. ازنظر کلید های رمز ژنتیکی و عوامل لازم برای اعمال مختلف بین میتوکندری با هسته تفاوتهایی وجوددارد. این واقعیت موجب می شودکه سنتزپروتئین آن به آنتی بیوتیک هایی که این عمل را در پروکاریوت ها مهار می کند، ونیز به آنتی بیوتیک هایی که ترجمه سیتوزولی یوکاریوت ها را مهار می کند حساس باشد(5).

میتوکندری، یک اندامگان کوچک درون سیتوپلاسمی با اندازه 1-5/0 میکرومتر است که در سیتوپلاسم سلول های هسته دار یوکاریوتی یافت می شود و دارایDNA مربوط به خـــود (mtDNA) می باشد ( 1 ).

میتوکندری ها به طور قابل توجهی کشایند (elastic) و متحرک بوده و شکل آن قابل تغییر است. نیز، قابلیت با هم یکی شدن و دوباره از هم جدا شدن را دارند. حرکت آنها توسط میکروتوبول ها (microtubules ) تنظیم می شود و این امر موجب توزیع میتوکندری به سلول های متفاوت می گردد. همچنین، دارای دو غشاء (درونی و بیرونی) وماتریکس بین دوغشاء و ماتریکس درونی می باشند. غشاء خارجی به مولکول های کوچک تاKD 10نفوذ پذیر است و درنتیجه تولید یک فضای بین غشائی می کند که از نظر شیمیایی (به ویژه مولکول های کوچک) معادل سیتوزول می باشد. غشاء درونی تنها بــه 2O و 2Co نفوذپذیر است. نفوذناپذیری امری مهم و حیاتی است که موجب حفظ شیب پروتون تولیدی به هنگام انتقال الکترون درطول زنجیره تنفسی می گردد. شیب پروتون برای تولیدATP لازم و ضروری است. تولید ATP و انرژی سلولی مهمترین واصلی ترین نقش میتوکندری محسـوب می شود( 1 ).

غشاء درونی دارای کریستاها و شیارهایی است که موجب افزایش سطح غشا برای انجام واکنش های زنجیره تنفسی می شود. این کریستاها می تواند ساختار لوله ای ساده یا پیچیده ( صفحه ای، مجرایی) را نشان دهند( 6 ). غشاء درونی دارای مجموعه یا کمپلکس های زنجیره تنفسی می باشد و در نتیجه حجم بالایی از پروتئین های غشائی غیرمعمول را داراست. به علاوه دارای انواع پروتئین های انتقال دهنــــده (ناقل) می باشد. ماتریکس یا فضای درونی شامل mtDNA ، ریبوزوم و پروتئین های لازم برای همانندسازی، رونویسی، ترجمه mtDNAونیز آنزیم ها و متابولیت های لازم برای دیگرفعالیت های میتوکندری (از جمله چرخه کربس، بتااکسیداسیون اسید های چرب، متابولیسم اسیدهای آمینه، زیست زایی ویتامین ها و ریبوزوم)، است. مواد غذایی درون ماتریکس اکسید شده و نتیجه آن احیا کمک عامل ها و انتقال الکترون ها به مجموعه های آنزیمی در غشاء درونی می باشد. خارج شدن الکترون توســط سه عدد از این مجموعه ها، ایجاد شیب پروتون و در نتیجه تولید ATP می کند (1 ).

از آنجا که میتوکندری مرکز مهم متابولیسم سلولی است و در بسیاری از مسیرهای متابولیکی درگیر است، معمولا" بخش وسیعی از حجم سلول را اشغال می کند. سلول های انسانی بسته به نیاز خود به انرژی، از چند تا چندین هزار میتوکندری رادارا می باشند. ازدیاد میتوکندری توسط تقسیم دوتایی است. در نتیجه هر میتوکندری از میتوکندری پیشین حاصل می شود( 4) .

ژنتیک میتوکندری : A Genetic Pandora’s Box

در اساطیرآمده است که مردی غول پیکر به نام Prometheus به دلیل دزدیدن آتش از خدا، محکوم به زندگی در صخره های قفقاز شد. خداوند برای تنبیه او بشر فانی یعنی زنی زیبا به نام Pandora را برای او فرستاد که تنها ضعف او کنجکاوی او بود. جعبه ای به رسم امانت به Pandora سپرده شده بود و اوقسم یادکرده بود که هرگز آن را باز نکند . اما به دلیل کنجکاوی، پاندورا آن جعبه را باز کرد و به محض بازشدن جعبه، تمام شیاطین از جعبه بیرون آمدند و در اطراف جهان پخش شدند. اما مناسبت مقایسةmtDNA به جعبه پاندورا تنها به دلیل بیماریهای فراوانی نیست که مسبب آن DNA حلقه ای میتوکندری می باشد، بلکه بدان جهت است که جعبه پاندورا توسط یک زن آورده شد و mtDNA نیز توسط مادر به فرزند انتقال می یابد. از طرفی Prometheus، به بشرآتش بیرونی (منبع روشنایی و گرما) را هدیه کرد در حالی که پاندورا آتش درونی (شیاطین و وسوسه های آنها ) را ارایه کرد و چنانچه می دانیم میتوکندری منبع انرژی درونی سلول می باشد( 3 ).

هرمیتوکندری دارای 2 تا 10 نسخه از DNA است. درنتیجه به طورمعمول هرسلول دارای 104 – 103 نسخه ازmtDNA می باشد. اندازه mtDNA در پستانداران بین 16 تا 18 کیلوباز متغیر است. mtDNAانسان، مولکول حلقوی دو رشته به اندازه bp 16569 می باشد. فاقد اینترون است و ژنهای آن ) شامل 37 عدد) بسیار فشرده و به هم چسبیده بوده یا اینکه تنها توسط چند نوکلئوتید از هم جدا شده اند. 2 ژن آن رمز کننده rRNA (s rRNA16s rRNA, 12) ، 22 ژن رمز کننده tRNA و 13 ژن آن رمز کننده پلی پپتیدهایی می باشد که همگی از ترکیبات زنجیرة تنفسی (فسفریلاسیون اکسیداتیو) هستند. زنجیره تنفسی دارای 5 مجموعه یا کمپلکس آنزیمی است که این مجموعه ها شامل 100 زیر واحد پروتئینی متفاوت است.

زیر واحدهایی که توسط mtDNA رمزدهی می شود، مشتمل بر موارد زیر است:

الف) 7 زیر واحد از 39 زیرواحد مجموعة یک به نام NADH دهیدروژنازیوبی کینون اکسید وردوکتاز

(NADH dehydrogenase-ubiquinone oxidoreductase ( : ND1, ND2 , ND3, ND4L , ND5, ND6 , ND4

ب) 1 زیر واحد از 10 زیرواحد مجموعة 3 به نام یوبی کینون سیتوکروم C اکسیدورودوکتاز

(ubiquinone-cytochrome C oxidoreductase) : سیتو کرومb یا Cytb

ج) 3 زیرواحدد از 13 زیرواحد مجموعة 4 تحت عنوان سیتوکروم C اکسیداز یا COX

(cytochrome C oxidase) : CoI , CoII,CoIII

د) 2 زیرواحد از 12 زیرواحد مجموعة 5 به نام ATP سنتتاز ( ATP synthetase) : ATP ase 6 وATPase 8

شایان ذکر است که تمام چهار زیرواحد مجموعة 2 با عنوان سوکسینات دهیدروژنازیوبی کینون اکسیدوردوکتاز(succinate dehydrogenase-ubiquinone oxidoreductase)، انحصارا توسط DNAی هسته ( nDNA nuclear DNA=) رمزدهی می شود ( 4) .

از آنجاکه 13 ژن، پلی پپتیدهای زنجیره تنفسی و 24ژن دیگر نیز RNA ها را که در سنتز پروتئین نقش دارند، رمزدهی می کنند، جهش و از بین رفتن فعالیت هر بخشی از mtDNA موجب می شود که سلول بیش از پیش ظرفیت سنتز ATP خود را ازدست بدهد (1 ).

باقیمانده زیرواحدهای این مجموعه ها توسط nDNA رمزدهی شده و در سیتوپلاسم ترجمه می گردند و از آنجا وارد میتوکندری می شوند و با زیر واحدهایی که توسط mtDNA رمزدهی می شود مجتمع می شوند. پروتئین های رمز شده توسط هسته، دارای پپتید یا علامت راهنما با بار مثبت در انتهای آمین خود می باشند که موجب هدایت آنها توسط این علامت به سوی میتوکندری گردیده و سپس به گیرنده مربوط به خود متصل شده و ازبین غشاء عبور می کنند. این پیتید راهنما پس از انتقال پروتئین به میتوکندری، توسط پروتئازها جدا می شود. به طور کلی حدود 1000 پروتئین میتوکندریایی متفاوت توسط ژنوم هسته ای رمزدهی می گردد. بنابراین جهش در ژنهای هسته ای می تواند بسیاری از اعمال میتوکندری را مختل کند( 5 ).

دو رشتة mtDNA از نظر محتوای بازی باهم متفاوت هستند. رشته سنگین (heavy=H) بیشتر دارای G و رشتة سبک (light=L) بیشتر د ارای C می باشد. عمل رشتة H الگو برداری s rRNA16 و s12 و 12 پلی پپتید و 14 عدد tRNA است. رشته L، الگوبرداری پلی پپتیدND6 و 8 عددtRNA را برعهده دارد. هررشته دارای یک نقطه شروع همانندسازی مربوط به خود است که فاصله دو منطقه همانندسازی (مربوط به دورشته) به اندازه دوسوم ژنوم می باشد. از نظر کنترلی، نقطه شروع همانندسازی رشته H، در منطقه مهمی قرار گرفته است که به آن حلقة D (Displacement ) گویند و تنها ناحیة غیر رمزدار در mtDNA است. ناحیة حلقة D شامل پروموتر(promoter=P) برای رونویسی هر دورشته mtDNA می باشد. پروموتر مربوط به رشتهH از نوکلئوتید567-547 وپروموتر مربوط به رشته L، ازنوکلئوتید 445-392 می باشد. همچنین، سه توالی حفظ شده 363-346:,CSBIIT 315-299 CSBII:و 235-213: CSBIو توالی TAS ( Termination Associated Sequence) یا 16172-16147 نیز دراین ناحیه قرار گرفته است. حلقة D یک منطقه سه رشته ای را شکل می دهد که رشته سوم یک قطعه جدیدH به نام Vs DNA می باشد. Vs DNA با استفاده از پرایمرRNA، از منطقه PL رونویسی شده وتانزدیک CSBII پیش رفته و سپس توسط RNA ase میتوکندریایی به نامMRP، که عمل آن پردازش RNA است، شکافته می شود. سنتز Vs DNA ازCSBII شروع می شود و در TAS ختم می گردد. اندازه آن np 700 است . سنتز رشته H از VsDNA شروع می شود ودرجهت عقربه ساعت ادامه یافته و زمانی که دوسوم ژنوم را طی کرد به منشاء همانندسازی رشته L ( 5798-5721OL, np ) می رسد. سنتز رشتهL نیز با یک پریماز ویژه که s rRNA8/5 سیتوزولی است شروع می شود و جهت سنتز آن در خلاف جهت رشته H و در طول رشته H آزاد شده می باشد. بنابراین همانندسازی دوجهته اما غیر همزمان است. از آنجا کهmtDNA ابرمارپیچ (super-coiled ) است، همانند سازی و رونویسی می تواند توسط برومیداتیدیوم (ethidium bromide ) مهار شود .

ژنوم میتوکندری ، فاقد اینترون بوده و بسیار فشرده می باشد و اغلب mRNA های آن فاقد توالی های ترجمه نشدنی انتهای ´5 و ´3 می باشند . درابتدای mRNA ها ، کلید رمز آغاز کننده ودرانتهای آنها کلید رمز ایست قرار دارد و پایانة پلی A پس از رونویسی به آنها اضافه می شود. رونوشت رشته H، تولید مقادیر زیادی رونوشت rRNA می کند.

مانند باکتری ها، سنتز پروتئین در میتوکندری، بااسیدآمینه فرمیل متیونین شروع می شود. عوامل طویل کننده آن مشابه باکتری هاست و به مهار کننده های ریبوزوم باکتری چون کلرامفنیکل (chloramphenicole=CAP ) حساس می باشد. شایان ذکر است که میتوکندری با دیگر اندامگان ها در داشتن کلیدهای رمز ژنتیکی متفاوت است، به طور مثال درمیتوکندری کلیدهای رمز ایست UGA و UGG برای تریپتوفان و کلیدهای رمز مربوط به آرژنین یعنی AGA و AGG برای ختم زنجیره استفاده می شود. چون اغلبmRNAهای میتوکندریایی دارای شمار زیادی از کلید UGA هستند، از این رو در سیتوپلاسم نمی توانند ترجمه شوند، در نتیجه این تفاوت در کلیدهای رمز ژنتیکی موجب می شود که تنها در میتوکندری ترجمه گردند (4 ).

میتوکندری دارای DNA پلیمرازگاما (ﻻ) ونیز عوامل رونویسی ویژه مانند mt TFA (نام دیگرآن Tfam ) می باشد که این دو پروتئین توسط هسته رمزدهی شده و سپس وارد میتوکندری می شوند. میتوکندری، همچنین واجد دیگر پروتئین های لازم برای همانند سازی مانند DNA پریماز، توپوایزومراز نوع 1و2، هلیکاز، پروتئین های متصل شونده به DNA تک رشته ای، DNA وRNA اندونوکلئازها و نوکلئوزید کینازها می باشد( 4 ).

تفاوت ژنتیک میتوکندریایی باژنتیک مندلی:

ژنتیک میتوکندریایی با ژنتیک مندلی از جهات متعددی ، به ویژه موارد زیر متفاوت است:

توارث مادری:

تخم دارای صد هزار mtDNA است در حالی که اسپرم تنها چندصد عدد دارد. به هنگام لقاح، تمام میتوکندری تخم و در نتیجه mtDNA از طریق اووسیت دریافت می شود، بنابراین مادری که دارای جهش در mtDNA می باشد آن را به تمام


دانلود با لینک مستقیم


تحقیق درباره ژنتیک مولکولی و ژن درمانی در بیماریهای میتوکندریایی

دانلود مقاله فراوانی و توزیع جهش های ژن CFTR در جهان

اختصاصی از رزفایل دانلود مقاله فراوانی و توزیع جهش های ژن CFTR در جهان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 16

 

فراوانی و توزیع جهش های ژن CFTR در جهان

فراوانی و نوع جهش های CFTR بر حسب شرایط جغرافیایی و نژادی متفاوت است [ ] به دلیل تنوع و فراوانی جهش های ژن CFTR [] ، اطلاع داشتن از توزیع و نوع جهشهای این ژن در یک جمعیت برای طراحی یک روش مولکولی مناسب جهت تشخیص ژنتیکی CF GHCL HSJ. [].

شایعترین جهش ژن CFTR, F508 می باشد که 70 درصد کروموزوم های CF [] و به عبارتی حدود کل جهش های CF را در بر می گیرد []. Morral و همکارانش []، با بررسی هاپلوتیپ های رازماهوارع همراه با جهش F508 و کروموزوم های نرمال، تخمین زدند که این جهش حدود 52000 سال پیش ایجاد شده است [ ]. این جهش در ابتدا توسط کشاورزان خاورمیانه، در طول دورة نئولیتیک گسترش یافته است [].

بر طبق مطالعات مختلف در اروپا، فراوانی جهش F508 از جنوب شرق به مشال غرب اروپا افزایش می یابد [ ]. به طوری که فراوانی این جهش در قسمتهای پمالی اروپا بین 70 تا 90 درصد و قسمتهای مدیترانه ای جنوب اروپا به 50 درصد می رسد [ ] بیشتریت فراوانی این جهش در جزایر Faeroe (100 درصد) [] و بعد از آن در دانمارک (87 درصد) و کمترین فراوانی آن در تونس (9/17 درصد) می باشد [ ].

فراوانی F508 در ترکیه و آسیا کم می باشد طبق آمارهای بدست آمده فراوانی این جهش در ترکیه 25 درصد است که نشان دهنده هتروژنی بالای ژنتیکی CF در این کشور است []. شکل

4 جهش G542X، N1303K، G551D و W1282X در مجموع حدود 1 درصد کل جهش های ژن CFTR را در بر می گیرند و بعد از F508، فراوانترین جهش های این ژن می باشند [ ].

جهش G542X بعد از F508، شایعترین جهش ژن CFTR بوده و باعث اختلال در تولید پروتئین می شود. بر طبق بررسی های به عما آمده این جهش حدود 35000 سال پیش ایجاد شده است []

Loirat و همکارانش [] توزیع فراوانی جهش را مشخص کرده اند. بر طبق این بررسی فراوانی آن در شمال شرق اروپا در مقایسه با جنوب غرب اروپا کمتر بوده و در ترکیه و جزایر Canary بسیار بالا و در تونس به بالاترین حد خود می رسد.

جهش N1303K ، بر طبق بررسی های نشانه های ریزماهواره مانند G542X، حدود 35000 سال پیش ایجاد شده و از آسیا به اروپا انتشار یافته است و بیشتر در شمال افریقا و جنوب اسپانیا دیده می شود [ ]

جهش G551D در شمال غرب و مرکز اروپا شایع است و در نواحی دیگر اروپایی کمتر دیده می شود [ ].

جهش W1282X نیز در بیشتر کشورهای مدیترانه ای شایع بوده و بیشترین فراوانی آن در اسرائیل (2/36 درصد) می باشد [].

فنوتیپ بالینی CF

تظاهرات کلینیکی CF بین خانواده های مختلف و حتی اعضای مختلف درون یک خانواده متفاوت است []. و این به دلیل ترکیب فاکتورهای محیطی که طور کامل شناخته ندشه اند. ژنهای تعدلی کنندهمختلف بیمار یو جهش های مختلف می باشد. به طور کلی CF یک بیناری چند سیستمی بوده و اپی تلیال مجاری تنفسی، برون ریز پانکراس، روده، گوارش، مجاری تناسلی سیستم کبدی – صفراوی و برون ریز عرق را تحت تأثیر قرار می دهد. [].

ویژگی های فنوتیپی برای تشخیص CF

سینوپولمنری مزمن

سینوپولمنری مزمن با عفونت مداوم در اثر بیماری زاهای تیپیک CF (مانند پودوموناس آئروجنیوزا استانیلوکوکوس آرئوس، هموفیلوس آنفولانزا) سرفه های مزمن، خلط، ناهنجاریها و اختلالات رادیوگرافی سینه مانند بزرگ شدن فقسه که ناشی از مشکلات ریوی در بیش از 15 درصد بالغین CF است []، انسداد مجاری هوائی، افزایش واکنش های التهابی در ریه، پولیپ بنی، چماق شدن انگشتان که در شروع تظاهرات ریوی در خود دیده می شود و شدت آن بستگی به بیمار ریوی دارد [ ]، آشکار می شود . در رابطه با علت عفونت مداوم به بیماری زاها، تئریهای مختلفی وجود دارد که اگرچه هنوز اثبات نشده اند ولی به هر حلال نی توانند توضیحی برای فنوتیپ بالینی غیرطبیعی مجرای هوائی بیماران CF باشند. در این جا به ذکر چند توری در این باره می پردازیم.

کیفیت و ترکیب پروتئوگلیکال ترشح شده تغییر می یابد که باعث چسبیدن بیناری زاها مثل پودوموناس می شود [].

غلظت یونی درون مجراهای هوائی تغییر یافته و پروتئین های آنتی بیوتیکی به نام بتا دفنیس 1 و 2 را غیر فعال می کند [ ].

CFTR به عنوان گیرندة زنجیره پلی ساکاریدی پودوموناس می باشد و باند شدن آن به این زنجیره باعث اندوسیتوز و تجزیه پاتوژن می شود. در سلولهای غیر طبیعی CF، پروتئین CFTR طبیعی وجود ندارد و در نتیجة عمل پاکسازی لپودوموناس مختل می شود [ ].

2. اختلالات تغذیه ای و بیماریهای روده ای - معدی


دانلود با لینک مستقیم


دانلود مقاله فراوانی و توزیع جهش های ژن CFTR در جهان

تحقیق وبررسی در مورد ژن درمانی 8 ص

اختصاصی از رزفایل تحقیق وبررسی در مورد ژن درمانی 8 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

بسم الله الرحمن الرحیم

ژن درمانی

نام و نام خانوادگی:

نفیسه روشن نیا

عطیه شیبانی راد

دبیرراهنما:

سرکار خانم امیرپور

پایه تحصیلی:دوم ریاضی وتجربی

دبیرستان فرزانگان 2

سال تحصیلی86-87

کشف سرنخ ژنتیکی منشا رشد اچ آی وی در انسان  

دانشمندان در "شورای تحقیقات پزشکی بریتانیا" دریافته اند که میمون های موسوم به "ریسس" (rhesus) به کمک تنها یک ژن مخصوص که از آنها در مقابل ویروس ها محافظت می کند، مانع رشد و تکثیر ویروس اچ آی وی در بدن خود می شوند. در بدن انسان ژنی معادل وجود دارد که بی نهایت به این ژن در میمون شباهت دارد، اما فعالیت اچ آی وی را سد نمی کند. دانشمندان در تست های آزمایشگاهی کشف کردند که تنها یک تغییر واحد در این ژن انسانی ممکن است مانع توسعه اچ آی وی و بروز بیماری ایدز شود. نتایج این تحقیقات در نشریه "Current Biology" چاپ شده است. دانشمندان از مدتی قبل می دانستند که آلوده کردن سلول های میمون به اچ آی وی در آزمایشگاه بسیار دشوارتر از آلوده کردن سلول های انسان به آن است و اکنون پژوهشگران در شورای تحقیقات پزشکی بریتانیا (ام آر سی) علت آن را دریافته اند. آنها سرگرم مطالعه ژن هایی که می توانند ویروس ها را مسدود کنند بوده اند و به خصوص ژنی را یافته اند که به "رتروویروس"هایی (retrovirus) مانند اچ آی وی حمله می کنند. این ژن "تریم 5" (Trim5) نام دارد اما تنها در غلبه بر ویروس اچ آی وی موجود در بدن "ریسس" موثر است. دکتر جاناتان استوی، سرپرست تیم محققان در این رشته مطالعات، معتقد است که تنها یک تغییر واحد در این ژن می توانست مانع آلوده شدن انسان به اچ آی وی شود. وی گفت: "انسان ها دارای یک ژن ضد رتروویروسی هستند.

متاسفانه این ژن تنها روی ویروس های موش و اسب کارگر است اما در مورد ویروس اچ آی وی نه." او افزود: "در مقابل، آن نسخه از ژن 'تریم 5' که در میمون ریسس وجود دارد می تواند تکثیر اچ آی وی و همچنین سایر ویروس ها را مسدود کند." "بنابراین یکی از نتیجه گیری های مطالعه ما این است که اگر انسان وارث این نوع خاص از ژن 'تریم 5' بود در آن صورت اپیدمی ایدز احتمالا هرگز روی نمی داد." دانشمندان موفق شده اند نوع انسانی این ژن ضدویروسی را در آزمایشگاه دستکاری کنند. آنها با تغییر تنها بخشی از این ژن - به طوری که به نمونه این ژن در بدن میمون شباهت پیدا کند - توانستند کاری کنند که سلول های انسان مانع تکثیر اچ آی وی شود. آنها اکنون می خواهند راهی برای قرار دادن این ژن اصلاح شده در بدن بیماران آلوده به اچ آی وی مثبت پیدا کنند تا سلول های آنها در برابر این ویروس مقاوم شود. به گفته آنها این کار ممکن است مانع ابتلای این افراد به ایدز شود. حتی اگر آنها موفق نیز شوند، بعید است که این شیوه جایگزین شیوه های درمانی جاری شود، زیرا تکنیک هایی مانند ژن درمانی هنوز با خطرات زیادی همراه هستند..

روند ژن درمانی و یا انتقال مواد ژنتیکی به سلول بیماران به منظور ارایه درمان کمکی با فراز و نشیب هایی همراه بوده است. به طور کلی کاستی های این روش درمانی به علت عدم رسیدن عامل ژنتیکی (Vectors) به سلول های موردنظر بوده است. Vectors های نوین طوری طراحی شده اند که قابلیت انتقال موثر و رسیدن به سلول های هدف را دارا می باشند.

اولین تلاش ها برای کاربرد این روش درمانی به سال 1990 برمی گردد، زمانی که یک بیمار مبتلا به نقض سیستم ایمنی با این روش بهبود یافت. بعد از این موفقیت در موارد محدودی روش ژن درمانی به کار گرفته می شد. در سال 1999 به علت مرگ بیماری که مبتلا به نقص آنزیمی خاصی بود و تحت درمان با این روش قرار داشت، سئوالات زیادی درخصوص ایمنی این نوع درمان مطرح شد. با این وجود این مورد در بین 3 هزار بیماری که با کمک دریافت عوامل ژنتیکی تحت درمان قرار داشتند، بحث برانگیز بود. شاید علت مرگ در این مورد دریافت دز زیاد ماده ژنتیکی و یا پاسخ ایمنی علیه Vectors ویروسی تجویز شده بود.

با آغاز هزاره دوم، دانشمندان اعلام نمودند که بیماری هموفیلی و نقص سیستم ایمنی شدید (SCID) که هر دو از بیماری های مهلک هستند توسط این روش قابل درمان هستند. مجددا با درمان 10 بیمار مبتلا به SCID در سال 2003 و بهبود علائم کم خونی در آنان، امیدها به استفاده از این روش در درازمدت افزایش یافت. با این وجود مطالعات بعدی نشان داد که علی رغم بهبود و تغییر وضعیت این بیماران، اما ویروس مورد استفاده برای این درمان احتمال شروع نوعی سرطان موسوم به LMO2 را افزایش می دهد. البته این مورد فقط مربوط به یک بیمار بود و آن هم در مورد فردی بود که نوعی ویروس (Retroviral Vector) را دریافت کرده بود. مطالعات همزمان در انگلستان و ایالات متحده نیز تکرار و بروز چنین عارضه ای را نشان ندادند، شاید بروز این رخداد به نوعی طراحی Vector مربوطه برمی گشت.

تاکنون متجاوز از 20 کودک مبتلا به SCID به کمک این روش از مرگ رهایی یافته اند. به طوری که اگر این عده می بایست با روش متعارف درمان شوند، شاید 30 درصد آنان تا اکنون از دست رفته بودند. در کل واضح است که هر روش درمانی، مخصوصا اگر فناوری نوینی را همراه داشته باشد با مخاطراتی روبه روست، ملاحظه سرگذشت روش های درمانی مانند واکسن ها، اعمال جراحی پیوند اعضا و کاربرد مونوکلونال آنتی بادی ها نیز با این گونه مخاطرات همراه بوده است. هم اکنون با کمک نوآوری هایی که در زمینه ژن درمانی انجام شده است، این روش نیز دستاوردهای مثبتی را در پی داشته است. به طوری که در حال حاضر متجاوز از 300 موسسه در عرصه نوآوری توسعه مربوط به ژن درمانی فعالیت دارند و بیش از 500 مورد آزمون بالینی دراین خصوص درحال انجام است.ا توجه به تحقیقاتی که انجام شده است، به نظر می رسد فرآورده های ژن درمانی چه درخصوص وراثتی و یا اکتسابی بتوانند تا سال 2005 یا 2006 وارد بازار شوند. پیش بینی می شود که تا سال 2010 حجم تجارت چند میلیون دلاری در این خصوص وجود داشته باشد. با افزایش و ارتقای روش های انتقال ژن ها به بیماران و درک تاثیر آنها در درمان بیماری ها به نظرمی رسد که سلامت و کارایی این روش درمانی نیز بهبود یابد.اغلب Vector های ژن درمانی، ویروس هایی هستند که از نظر ژنتیکی بیماری زایی آنها از بین رفته است ولی هنوز دارای قدرت آلوده کنندگی می باشند. مطالعات اولیه نشان داده است که رتروویروس ها و آدنوویروس های به کار رفته به عنوان Vector به رغم تاثیر مثبت آزمایشی که داشته اند، با این وجود عوامل مناسبی در حالت های بالینی نبوده اند.

با کاربرد Vector های جدید مشکلات مربوط به انتقال ضعیف مواد ژنتیکی به درون سلول تا حدی برطرف شده است. Lentivirus ها و ویروس های AAV عوامل مناسبی برای این هدف هستند. شرکت های Avigen در ایالت متحده و Oxford Biomedica در انگلستان از موسساتی هستند که این نوع Vector ها را به کار گرفته اند.

پس از اصلاحات زیادی در ویروس AAV و Lentivirus آنها قابلیت کاربرد بالینی را در ژن درمانی به دست آورده اند. یکی از قابلیت آنها در این است که فقط ژن درمانی توسط آنها بیان می شود. بنابراین احتمال بروز مخاطرات از طریق این نوع Vector ها به حداقل خواهد رسید. امتیاز دیگر این نوع ویروس های اصلاح شده در این است که قابلیت ارایه درمانی در محدوده وسیعی از سلول های تکثیرپذیر را دارند. بنابراین Vector های مزبور قابلیت ارایه در سلول های مغزی، ریوی، قلب، کبد، عضلات، شبکیه و نخاع را دارند. سطح بالای بیان ژنی این نوع Vector ها آن هم به مدت طولانی سبب امتیاز کاربرد آنها در بیماری های مزمن شده است.

البته باید بدانیم که کاربردهای واقعی ژن درمانی فراتر از ارایه ژن ها به منظور تکمیل و یا تصحیح ژن های از کار افتاده است، بلکه این روش به طور کلی برای ارایه پروتئین ها به کار گرفته می شود. به طوری که پس از ارایه پروتئین ها به کمک این روش، سلول بیماران به کارخانه ای برای تولید پروتئین های مورد نظر تبدیل می شود که عمدتا بیماران به آنها نیازمند هستند. به طور مثال در شرکت Oxford Biomedica پروژه ای دنبال می شود تا به کمک ژن درمانی تولید پروتئین های مسئول تولید دوپامین را در افراد مبتلا به پارکینسون که عمدتا نقص دوپامین در آنها وجود دارد، ایجاد کند. در شرکت Avigen نیز طراحی و کاربرد Vector به AAV به منظور افزایش طول اثر L-DOPA در بیماران مبتلا به پارکینسون دنبال می شود. در سایر بیماری های عصبی نیز، روش ژن درمانی به منظور خاموش کردن ژن های فاسد شده به عوض تولید ژن های جدید به منظور کاهش عوارض مرگبار بیماری های مغزی مانند Huntington دنبال می شود.

ترمیم ضایعات نخاعی موضوع دیگری برای کاربرد ژن درمانی است. در موسسه Oxford Biomedica پروژه ای به نام Innurex به منظور استفاده از Vector خاصی برای ترمیم نرون های نخاعی که در اثر صدمات ورزش و یا حوادث دچار


دانلود با لینک مستقیم


تحقیق وبررسی در مورد ژن درمانی 8 ص

دانلودتحقیق درمورد فراوانی و توزیع جهش های ژن CFTR در جهان

اختصاصی از رزفایل دانلودتحقیق درمورد فراوانی و توزیع جهش های ژن CFTR در جهان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 16

 

فراوانی و توزیع جهش های ژن CFTR در جهان

فراوانی و نوع جهش های CFTR بر حسب شرایط جغرافیایی و نژادی متفاوت است [ ] به دلیل تنوع و فراوانی جهش های ژن CFTR [] ، اطلاع داشتن از توزیع و نوع جهشهای این ژن در یک جمعیت برای طراحی یک روش مولکولی مناسب جهت تشخیص ژنتیکی CF GHCL HSJ. [].

شایعترین جهش ژن CFTR, F508 می باشد که 70 درصد کروموزوم های CF [] و به عبارتی حدود کل جهش های CF را در بر می گیرد []. Morral و همکارانش []، با بررسی هاپلوتیپ های رازماهوارع همراه با جهش F508 و کروموزوم های نرمال، تخمین زدند که این جهش حدود 52000 سال پیش ایجاد شده است [ ]. این جهش در ابتدا توسط کشاورزان خاورمیانه، در طول دورة نئولیتیک گسترش یافته است [].

بر طبق مطالعات مختلف در اروپا، فراوانی جهش F508 از جنوب شرق به مشال غرب اروپا افزایش می یابد [ ]. به طوری که فراوانی این جهش در قسمتهای پمالی اروپا بین 70 تا 90 درصد و قسمتهای مدیترانه ای جنوب اروپا به 50 درصد می رسد [ ] بیشتریت فراوانی این جهش در جزایر Faeroe (100 درصد) [] و بعد از آن در دانمارک (87 درصد) و کمترین فراوانی آن در تونس (9/17 درصد) می باشد [ ].

فراوانی F508 در ترکیه و آسیا کم می باشد طبق آمارهای بدست آمده فراوانی این جهش در ترکیه 25 درصد است که نشان دهنده هتروژنی بالای ژنتیکی CF در این کشور است []. شکل

4 جهش G542X، N1303K، G551D و W1282X در مجموع حدود 1 درصد کل جهش های ژن CFTR را در بر می گیرند و بعد از F508، فراوانترین جهش های این ژن می باشند [ ].

جهش G542X بعد از F508، شایعترین جهش ژن CFTR بوده و باعث اختلال در تولید پروتئین می شود. بر طبق بررسی های به عما آمده این جهش حدود 35000 سال پیش ایجاد شده است []

Loirat و همکارانش [] توزیع فراوانی جهش را مشخص کرده اند. بر طبق این بررسی فراوانی آن در شمال شرق اروپا در مقایسه با جنوب غرب اروپا کمتر بوده و در ترکیه و جزایر Canary بسیار بالا و در تونس به بالاترین حد خود می رسد.

جهش N1303K ، بر طبق بررسی های نشانه های ریزماهواره مانند G542X، حدود 35000 سال پیش ایجاد شده و از آسیا به اروپا انتشار یافته است و بیشتر در شمال افریقا و جنوب اسپانیا دیده می شود [ ]

جهش G551D در شمال غرب و مرکز اروپا شایع است و در نواحی دیگر اروپایی کمتر دیده می شود [ ].

جهش W1282X نیز در بیشتر کشورهای مدیترانه ای شایع بوده و بیشترین فراوانی آن در اسرائیل (2/36 درصد) می باشد [].

فنوتیپ بالینی CF

تظاهرات کلینیکی CF بین خانواده های مختلف و حتی اعضای مختلف درون یک خانواده متفاوت است []. و این به دلیل ترکیب فاکتورهای محیطی که طور کامل شناخته ندشه اند. ژنهای تعدلی کنندهمختلف بیمار یو جهش های مختلف می باشد. به طور کلی CF یک بیناری چند سیستمی بوده و اپی تلیال مجاری تنفسی، برون ریز پانکراس، روده، گوارش، مجاری تناسلی سیستم کبدی – صفراوی و برون ریز عرق را تحت تأثیر قرار می دهد. [].

ویژگی های فنوتیپی برای تشخیص CF

سینوپولمنری مزمن

سینوپولمنری مزمن با عفونت مداوم در اثر بیماری زاهای تیپیک CF (مانند پودوموناس آئروجنیوزا استانیلوکوکوس آرئوس، هموفیلوس آنفولانزا) سرفه های مزمن، خلط، ناهنجاریها و اختلالات رادیوگرافی سینه مانند بزرگ شدن فقسه که ناشی از مشکلات ریوی در بیش از 15 درصد بالغین CF است []، انسداد مجاری هوائی، افزایش واکنش های التهابی در ریه، پولیپ بنی، چماق شدن انگشتان که در شروع تظاهرات ریوی در خود دیده می شود و شدت آن بستگی به بیمار ریوی دارد [ ]، آشکار می شود . در رابطه با علت عفونت مداوم به بیماری زاها، تئریهای مختلفی وجود دارد که اگرچه هنوز اثبات نشده اند ولی به هر حلال نی توانند توضیحی برای فنوتیپ بالینی غیرطبیعی مجرای هوائی بیماران CF باشند. در این جا به ذکر چند توری در این باره می پردازیم.

کیفیت و ترکیب پروتئوگلیکال ترشح شده تغییر می یابد که باعث چسبیدن بیناری زاها مثل پودوموناس می شود [].

غلظت یونی درون مجراهای هوائی تغییر یافته و پروتئین های آنتی بیوتیکی به نام بتا دفنیس 1 و 2 را غیر فعال می کند [ ].

CFTR به عنوان گیرندة زنجیره پلی ساکاریدی پودوموناس می باشد و باند شدن آن به این زنجیره باعث اندوسیتوز و تجزیه پاتوژن می شود. در سلولهای غیر طبیعی CF، پروتئین CFTR طبیعی وجود ندارد و در نتیجة عمل پاکسازی لپودوموناس مختل می شود [ ].

2. اختلالات تغذیه ای و بیماریهای روده ای - معدی


دانلود با لینک مستقیم


دانلودتحقیق درمورد فراوانی و توزیع جهش های ژن CFTR در جهان

دانلود پاورپونیت در مورد بررسی ساختارژنوم و ژن

اختصاصی از رزفایل دانلود پاورپونیت در مورد بررسی ساختارژنوم و ژن دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپونیت در مورد بررسی ساختارژنوم و ژن


دانلود پاورپونیت در مورد بررسی ساختارژنوم و ژن

دانلود پاورپونیت در مورد بررسی ساختارژنوم و ژن 

فرمت فایل: پاورپونیت

تعداد اسلاید: 10

 

 

 

 

بخشی از متن


یک آزمایش همسانه سازی که با دقت طرح ریزی شده و با مهارت انجام گیرد ، یک همسانه یا پلاکی فراهم خواهد کرد که حاوی نسخه هایی از مولکول DNA ی نو ترکیب می باشد و حامل ژن مورد نظر است . مهمترین روش هایی که برای مطالعه ی یک ژن همسانه شده مفید می باشند عبارتند از :
1ـ روش های تعیین جایگاه یک ژن همسانه شده در طول یک مولکول
DNA ی بزرگتر
2ـ روش های توالی یابی
DNA
3ـ روش هایی که امکان استفاده از ژن همسانه شده برای مطالعه ی ساختار کلی ژنومی که به طور طبیعی در آن قرار دارد ، فراهم می کند .


دانلود با لینک مستقیم


دانلود پاورپونیت در مورد بررسی ساختارژنوم و ژن