رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت شبکه های عصبی مصنوعی

اختصاصی از رزفایل پاورپوینت شبکه های عصبی مصنوعی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت شبکه های عصبی مصنوعی


پاورپوینت شبکه های عصبی مصنوعی

این فایل حاوی مطالعه شبکه های عصبی مصنوعی می باشد که به صورت فرمت PowerPoint در 28 اسلاید در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

فهرست
تاریخچه
تعریف
مقایسه شبکه عصبی با کامپیوترهای معمولی
دلایل استفاده از شبکه عصبی
مراحل یادگیری شبکه عصبی
انواع شبکه های عصبی و مقایسه آنها
کاربردهای شبکه عصبی
سیستم شناسایی چهره
تشخیص چهره با فیلتر گابور
مزایا و معایب

 

تصویر محیط برنامه


دانلود با لینک مستقیم


پاورپوینت شبکه های عصبی مصنوعی

تأثیر فعالیت عصبی سمپاتیک و کته کولامین‌‌ها روی نورون‌‌های آوران اولیه 14ص

اختصاصی از رزفایل تأثیر فعالیت عصبی سمپاتیک و کته کولامین‌‌ها روی نورون‌‌های آوران اولیه 14ص دانلود با لینک مستقیم و پر سرعت .

تأثیر فعالیت عصبی سمپاتیک و کته کولامین‌‌ها روی نورون‌‌های آوران اولیه 14ص


تأثیر فعالیت عصبی سمپاتیک و کته کولامین‌‌ها روی نورون‌‌های آوران اولیه  14ص

دسته بندی :  پزشکی

فرمت فایل:  Image result for word doc 
حجم فایل:  (در قسمت پایین صفحه درج شده)
تعداد صفحات فایل:    14 ص

 فروشگاه کتاب : مرجع فایل

 

 

 

 قسمتی از محتوای متن Word 

  تأثیر فعالیت عصبی سمپاتیک و کته کولامین‌‌ها روی نورون‌‌های آوران اولیه[1]

در شرایط عادی، نورون‌‌های آوران اولیه نسبت به کته کولامین‌‌ها حساسیتی نداشته و فعالیت آنها تحت تأثیر جریان سمپاتیک قرار نمی‌گیرد. با این وجود در بعضی سندرم‌های درد نورماتیک مانند سندرم‌های درد موضعی پیچیده[2] (استیروفی سمپاتیک رفلکسی[3] و کوزاثری[4]) وضعیت تفاوت می‌نماید. این موضوع بر اساس مشاهدة بالینی تأثیر اعمال سمپاتولیتیک در تسکین درد در این سندرم‌ها می‌باشد. در گزارش مطالعه صد سالة خود در سال 1967 به نحو بسیار برجسته‌ای خصوصیات بالینی کوزالژی و تأثیر ملاحظات سمپاتولیتیک را توصیف کرده است:

 

یکی از تجارب بسیار ارزشمند طرحی در طی جنگ جهانی دوم کشف این مسأله بود که قطع رشته‌های عصبی سمپاتیک خاصی تقریباً همیشه در درمان درد کوزالژی مؤثر است. با بلوک زنجیره سمپاتیک با داروی بی‌حسی موضعی، در صورتی که تزریق درست انجام شده باشد تقریباً تسکین صددرصد بطور فوری ظاهر می‌شود. در چنین وضعیتی تغییر چهره و رفتار بیمار بسیار جالب توجه می‌باشد.

 

با این وجود نویسندگان دیگری با فرضیه دخالت فعال سیستم عصبی سمپاتیک در تولید درد مخالفند. آنها معتقدند که نتایج مطالعات و استفاده از تکنیک‌های مختلف بلوک سمپاتیک در درد نوروپاتیک ندرتاً بطور کامل مورد بررسی قرار گرفته و غالباً نیز از نوع کنترل شده توسط دارونما نبوده اند.

 

در سال‌های اخیر، مطالعات تجربی و بالینی بسیاری باعث روشن‌تر شدن مسأله همچنان لاینحل نقش سیستم سمپاتیک در تولید درد در شرایط پاتوفیزیولوژیک شده‌اند. این مطالعات دو نوع تأثیر سمپاتیک روی نورون‌های آوران را مشخص نموده‌اند. تمایز آنها به نظر مربوط است به این مسئله که آیا ارتباط و اتصال بین نورون‌های آوران و سمپاتیک پس از آسیب تروماتیک عصبی بوجود می‌آید یا پس از التهاب بافت محیطی همراه با حساسیت به درد.

 

تأثیر فعالیت سمپاتیک و کته کولامین‌های روی رشته‌های آوران اولیه پس از آسیب عصبی (جدول 1)

 

تجارب حیوانی

 


 

 

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن در این صفحه درج شده به صورت نمونه

ولی در فایل دانلودی بعد پرداخت، آنی فایل را دانلود نمایید


دانلود با لینک مستقیم


تأثیر فعالیت عصبی سمپاتیک و کته کولامین‌‌ها روی نورون‌‌های آوران اولیه 14ص

دانلود پروژه استفاده از روش‌های شبکه عصبی در طبقه‌بندی پروتئین ها

اختصاصی از رزفایل دانلود پروژه استفاده از روش‌های شبکه عصبی در طبقه‌بندی پروتئین ها دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه استفاده از روش‌های شبکه عصبی در طبقه‌بندی پروتئین ها


دانلود پروژه استفاده از روش‌های شبکه عصبی در طبقه‌بندی پروتئین ها

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 20
فهرست و توضیحات:

استفاده از روش‌های شبکه عصبی در
طبقه‌بندی پروتئین‌ها

پروژه درس مباحث ویژه پایگاه‌ داده‌ها

عناوین

چکیده

فهرست شکل‌ها

شکل 1: یک شبکه پرسپترونی سه لایه

شکل 2: تاثیر ورودی از نرون i با وزن بر نرون j

شکل 3: نرخ طبقه‌بندی صحیح برای طبقه بندی کننده‌های MLP

شکل 4: نرخ طبقه‌بندی صحیح برای طبقه بندی کننده‌های RBF

 

چکیده

تشخیص فولد پروتئین‌ها از جمله مسائل چالش برانگیزی است که در طی 35 سال گذشته محققان بسیاری در سراسر دنیا در این زمینه تحقیق کرده‌اند. امروزه به کارگیری علوم مهندسی برای حل مسائل حوزه علوم زیستی و پزشکی به سرعت و با موفقیت رو به افزایش است، بنابراین بسیاری از دانشمندان کامپیوتر به این سمت گرایش پیدا کرده‌اند تا بتوانند از روش‌های مختلف یادگیری ماشین در پیاده سازی سیستم‌های خودکار و هوشمند به منظور طبقه‌بندی پروتئین‌ها کمک بگیرند. هدف نهایی  در پیاده سازی این سیستم‌ها  نزدیک بودن هرچه بیشتر تصمیم اتخاذ شده توسط ماشین به تصمیم فرد خبره بیولوژیست می‌باشد.

با این وجود به خاطر پیچیدگی بسیار این مساله که ناشی از تعداد کلاس‌های نسبتا زیاد پروتئین‌ها و بزرگ بودن ابعاد ویژگی آنهاست، بدست آوردن جواب قابل قبول در طبقه‌بندی پروتئین‌ها با استفاده از روش‌های معمول یادگیری ماشین تقریبا امکان پذیر نمی‌باشد.  در این پژوهش ما از یک مدل ترکیبی طبقه‌بندی با استفاده از  شبکه های عصبی MLP، RBF و روش ترکیب طبقه بندی کننده‌های بیزی برای تعیین فولد پروتئین ها استفاده کرده‌ایم. نتایج بدست آمده نشان می‌دهد که شبکه‌های عصبی RBF دارای نرخ طبقه بندی صحیح بهتری نسبت به سایر روش‌ها مانند MLP و ماشین‌های بردار پشتیبان داشته است. این امر می‌تواند به علت فضای جستجوی بسیار بالا برای یافتن پارامترهای بهینه ماشین‌های بردار پشتیبان و زمان نسبی زیاد یادگیری در این نوع طبقه بندی کننده‌ها باشد. همچنین نتایج بدست آمده نشان می‌دهد که نرخ طبقه بندی صحیح پروتئین‌ها با استفاده از روش ترکیب بیزی به ٪59 افزایش یافته است. که البته در مقاله دیگری توانسته‌اند با استفاده از کلاسیفایر svm به 62.5٪  برسند. که نشان می‌دهد هنوز این پژوهش نیاز به بررسی بیشتر دارد.

1.  مقدمه

پروتئین‌ها ماکرومولکول‌های بیولوژیک بزرگی هستند که اجزاء اصلی ارگانیسم‌های زنده را تشکیل می‌دهند و تمام اعمال حیاتی آنها را کنترل می‌کنند. عملکرد یک پروتئین مربوط به واکنش‌های شیمیایی پروتئین با محیط اطراف و سایر پروتئین‌ها می‌باشد. از طرف دیگر خود این امر وابسته به شکل و ساختار سه بعدی پروتئین و نحوه فولدینگ اجزاء آن می‌باشد. تعیین ساختار سه‌بعدی پروتئین به طور تجربی بسیار دشوار است و از آنجایی‌که معمولا ترتیب زنجیرة هر پروتئین دانسته است، پژوهشگران می‌کوشند تا با استفاده از روش‌های زیست‌فیزیکی گوناگون پدیده تاخوردگی پروتئین‌ها را مدل کرده و به این ترتیب ساختار سه‌بعدی نهایی را از روی دنبالة اسیدهای آمینه پیش‌بینی کنند. بر اساس باور بسیاری از پژوهشگران  پروتئین‌ها برای عملکرد صحیح می‌بایست ساختار سه‌بعدی درست خود را بدانند. لذا اگر پروتئینی نتواند به ساختار درست خود تا شود، غیرفعال خواهد شد. دلیل برخی از بیماری‌ها انباشتگی پروتئین‌های بد تاخورده پنداشته می‌شود.

انبوه پروتئین‌های تعیین توالی شده که در صف طویل تعیین خواص ساختاری و شناسایی عملکرد قرار گرفته‌اند، نیاز به روش‌های محاسباتی برای تعیین ساختار و توپولوژی پروتئین‌ها را آشکار می‌سازد. این  مساله به عنوان یکی از چالش های 35 سال اخیر دانشمندان بیولوژی توجه بسیاری از محققان علوم کامپیوتر را به خود جلب کرده است ‎. با این وجود به دلیل طبیعت پیچیده ناشی از تعداد زیاد کلاس‌های پروتئین و همچنین بالا بودن ابعاد فضای ویژگی، عموما روش‌های معمول یادگیری ماشین به نتایج چندان رضایت بخشی نمی‌رسند . در چنین مسائل طبقه‌بندی فرض می‌شود که فولدهای ممکن محدود است و هر پروتئین به کلاس یکی از انواع محدود فولدها تعلق دارد. می‌توان گفت شناسایی الگوی فولد یک پروتئین در سطحی عمیق‌تر از شناسایی کلاس ساختارهای نوع دوم پروتئین قرار می‌گیرد و به طبع دشوارتر و پیچیده‌تر از آن است. دشواری این مساله از آنجا ناشی می‌شود که با توجه به ساختارهای نوع دوم تشکیل دهنده پروتئین تعداد زیادی توپولوژی شناخته شده می‌توانند کاندید انتخاب به عنوان توپولوژی مناسب برای یک پروتئین با توپولوژی ناشناخته شوند.

روش استفاده شده در این تحقیق برای روبرو شدن با چنین مساله دشواری ترکیب تصمیم‌هایی است که هر یک با توجه به زاویه دیدی متفاوت به موضوع اتخاذ شده‌اند. در این تحقیق کلاسیفایرهای مورد استفاده در مواردی چون شناسایی ساختار دوم، آبگریزی ، حجم واندروالس، قطبیت،  و قابلیت قطبی شدن از روی مجموعه داده‌های آموزش به خبرگی مورد نیاز رسیده‌اند.

در این پژوهش ما از یک مدل ترکیبی طبقه‌بندی با استفاده از  شبکه‌های عصبی MLP، RBF و روش ترکیب طبقه بندی کننده‌های بیزی برای تعیین فولد پروتئین‌ها استفاده کرده‌ایم. در ادامه در بخش دوم این گزارش ابتدا مقدمه‌ای مختصر درباره شبکه‌های عصبی مصنوعی آورده شده است. بخش سوم به شرح روش رای گیری اکثریت و همچنین روش  بیز در ترکیب تصمیم طبقه بندی کننده‌های مختلف می‌پردازد.  در بخش چهارم به بیان مشخصات داده‌ها و همچنین عملیات‌های انجام شده به منظور آماده سازی داده‌های مساله پرداخته‌ایم. در بخش‌های پنجم و ششم و هفتم نیز به ترتیب نتایج آزمایشات، مقایسه با کارهای انجام شده قبلی و کارهای آینده آورده شده است.

این فقط قسمتی از متن پروژه است . جهت دریافت کل متن پروژه ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود پروژه استفاده از روش‌های شبکه عصبی در طبقه‌بندی پروتئین ها

پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی

اختصاصی از رزفایل پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی


پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی

دانلود دو سری پاورپوینت در زمینه های بازاریابی عصبی و بازاریابی ویروسی در 26 و 39 اسلاید قابل ویرایش

 

 

 

 

 

 

 

برخی از اسلاید های هر دو پاورپوینت:

هدف بازاریابی عصبی

مشکل ازدیاد پیام‌های تبلیغاتی

 خرید از فروشنده نامناسب

آیا بازاریابی عصبی در کسب‌و‌کارهای کوچک قابل استفاده است؟

بازاریابی ویروسی

مشکلات بازاریابی ویروسی

برخی راهکارهای غلبه بر مشکلات بازاریابی ویروسی

تاریخچه

دو بینش بازار یابی ویروسی

دلایل محبوبیت بازاریابی ویروسی

ویروسی ارزشی

روش های انتقال بازاریابی ویروس

موانع برسرراه بازاریابی ویروسی

ده روش موثر برای بازاریابی ویروسی

 

و دهها موضوع مورد بحث پیرامون این مطلب


دانلود با لینک مستقیم


پاورپوینت های بازاریابی عصبی و بازاریابی ویروسی

پاورپوینت شبکه های عصبی مصنوعی

اختصاصی از رزفایل پاورپوینت شبکه های عصبی مصنوعی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت شبکه های عصبی مصنوعی


پاورپوینت شبکه های عصبی مصنوعی

این فایل حاوی مطالعه شبکه های عصبی مصنوعی می باشد که به صورت فرمت PowerPoint در 39 اسلاید در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

فهرست
تاریخچه
شبکه عصبی چیست؟
کاربرد‌های داده کاوی – آنالیز بازار
الهام از طبیعت
قانون دلتای تعمیم یافته
الگوریتم Gradient Descent

 

تصویر محیط برنامه


دانلود با لینک مستقیم


پاورپوینت شبکه های عصبی مصنوعی