رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه رشته عمران با موضوع مزایا و معایب استفاده از روش قالب لغزنده عمودی

اختصاصی از رزفایل پایان نامه رشته عمران با موضوع مزایا و معایب استفاده از روش قالب لغزنده عمودی دانلود با لینک مستقیم و پر سرعت .

پایان نامه رشته عمران با موضوع مزایا و معایب استفاده از روش قالب لغزنده عمودی


پایان نامه رشته عمران با موضوع مزایا و معایب استفاده از روش قالب لغزنده عمودی

در این پست می توانید متن کامل پایان نامه رشته عمران با موضوع مزایا و معایب استفاده از روش قالب لغزنده عمودی را  با فرمت ورد word دانلود نمائید:

 

 مزایا و معایب استفاده از روش قالب لغزنده عمودی

در مورد مزایای و معایب این روش اجرائی مباحث مختلفی وجود دارد. عده ای بطور کلی استفاده از قالب لغزنده عمودی را نامناسب می دانند یکی از معایب  عمده ای که این عده از نسبت به قالب لغزنده مطرح می کنند مسئله ایجاد تنش های مکانیکی است که در اثر بکارگیری این روش اجرائی در سطح بتن بوجود می آید. این ا فراد ادعا دارند که نیروی اصطحکاک ایجاد شده بین سطح قالب و بتن میتواند از مقاومت کششی بتن تازه ریخته شده بیشتر باشد و در نتیجه سطح بتن ترک خورده و باعث کاهش میزان دوام و مقاومت فشاری بتن میشود. در مقابل دست اندرکاران و طرفداران قالب لغزنده ادعا دارند که فقط زمانی که بین بیش از حد در داخل قالب بماند و سفت شود، چنین شرایطی اتفاق می افتد و در صورت به کارگیری روش های صحیح در اجرای عملیات قالب لغزنده و استفاده از یک مخلوط مناسب بتن، کیفیت سازه اجرا شده توسط قالب لغزنده از کیفیت سازه مشابهی که توسط روش های معمولی قالب بندی اجرا شده نبایستی کمتر باشد افزودنی های بتن به بالا بردن کیفیت کار قالب لغزنده کمک شایان توجهی نموده استفاده از میکروسیلیکا روان کننده و دیر گیر باعث شده بتوان حتی با شن و ماسه شکسته شده نیز بتن های خوبی توسط قالب لغزنده ارائه داد. می توان مزایای استفاده از قالب لغزنده عمودی به شرح زیر بر شمرد:

  • سرعت اجرای سازه بسیار بالاست
  • اقتصادی است
  • سازه اجرا شده کاملاً یکپارچه بوده و عاری از وجود درسهای ساختمانی عمودی و افقی است.
  • گرچه در صورت دقت در اجرای عملیات نمای بتن بسیار خوب و قابل قبول خواهد بود، معذالک امکان انجام عملیات نما کاری بر روی سازه بلافاصله بعد از بتن ریزی وجود دارد که باعث می وشد ملات نما بابتن تازه ریخته شده چسباندگی بهتری داشته باشد.
  • نیازی به اجرای داربست نما به روشهای کلاسیک نیست.
  • امکان پیش ساخته کردن قطعات قالب در کارخانه وجود دارد و لذا عملیات درون کارگاه ساختمانی از لحاظ آهنگری و نجاری به حداقل می رسد.
  • امکان اجرای قسمت های دیگری از کار اجرای سازه ازقبیل بالا کشیدن خرپاهای سقف و غیره به طور همزمان با اجرای قالب لغزنده وجود دارد.

در اینجا لازم است نکته ای را یاد آور شویم و آن اینکه قالب لغزنده تنها برای اجرای سازه های مرتفع به صرفه خواهد بود (شکل 4).

همانطور که در شکل 4 مشخص است انجام عملیات قالب لغزنده برای ارتفاعات بالای بیست متر کاملاً به صرفه خواهد بود. در مقابل برای ارتفاعات کمتر از 10 متر اجرای سازه توسط قالب لغزند چندان مناسب نیست.

و اما معایب استفاده از قالب لغزنده را می توان به شرح زیر نام برد:

1- قیمت اولیه قالب گرانتر از قالب های معمولی است

2- اجرای باز شوها، برآمدگی ها و همچنین آرماتورهای انتظار مشکل است. اصولاً قالب لغزنده برای اجرای سازه هایی که مقطع ثابت داشته باشند مناسب تر است. نظیر سیلوهای گندم و امثال آن.

3- برای اجرای سازه هایی که مقطع متغییر دارند، مانند دودکش های بالاتر از 100 متر، اجرای قالب لغزنده با مشکلات بیشتر همراه است. در پایان این کتاب قالب لغزنده مقطع متغیر صحبت خواهیم کرد.

4- تدارکات اجرائی مشکل است. چون قالب لغزنده معمولاً 24 ساعته و به طور سه شیفت اجرا می شود، در نتیجه تأمین بتن و آرماتور و سایر تدارکات مورد نیاز آن حساس تر از کارهای معمولی است. در صورت قطع برق، وجود موتور ژنراتور ضروری است. همچنین بایستی پیش بینی های لازم در مورد خراب شدن ساز، دستگاه انتقال دهنده بتن مانند پمپ و یا جرثقیل و یا سایر وسایل کار را به عمل آورد.

5- در گرما و یا در سرمای شدید اجرای قالب لغزنده نسبت به روش های دیگر مشکلات بیشتری را به همراه دارد.

6- مقاومت نهایی ومشخصات مکانیکی بتن ریخته شده توسط سیستم لغزنده پائین تر از بتن ریخته شده توسط روشهای معمولی قالب بندی است. کمی جلوتر در مبحث سرعت بالا کشیدن قالب به این موضوع خواهیم پرداخت.

7- به طور کلی اجرای قالب لغزنده نیاز به نیروی متخصص بیشتری داشته و بایستی در جمیع جهات آن دقت لازم را به عمل آورد. به عنوان نمونه ای از این بی دقتی ها میتوان سیلوی کارخانه سیمان بهبهان را نام برد. سیلوی مزکور که در سال 1356 توسط قالب لغزنده اجرا شده بود. در مهرماه 1370 به یکباره فرو ریخت و خسارت فراوانی به بار آورد.

دستگاه قدرت هیدرولیکی

در عملیات قالب لغزنده نیروی لازم برای بالا بردن جک توسط دستگاه قدرت هیدرولیک تأمین میشود. در کارگاههای ایران دستگاه قدرت هیدرولیک را پمپ هیدرولیک می نامند. البته پمپ یکی از اجزای دستگاه قدرت است. ما نیز در جاهایی از این نوشته دستگاه قدرت را پمپ نامیده ایم.

وظیفه دستگاه قدرت هیدرولیکی آن است که روغن را با فشار بسیار زیاد به سمت جکها روانه کند. جکها در اثر فشار روغن شروع به بالا رفتن از میل جک می کنند. عملکرد دستگاه قدرت هیدرولیک در سیستم قالب لغزنده درست مانند عملکرد قلب دربدن انسان می باشد. به شکل 27 دقت کنید در این شکل یک نمای بسیار کلی از مسیر جریان روغن را مشاهده می کنید.

بایستی دقت داشته باشید که دستگاه قدرت در سیستم لغزنده دائماً روشن نمی باشد، بلکه در در فواصل زمانی مثلاً هر ده دقیقه یکبار دستگاه را روشن می کنند و در نتیجه قالب به اندازه یک کورس جک به بالا کشیده میشود. سپس سیستم را تا فاصله زمانی بعدی خاموش می کنند. این عمل را میتوان با قرار دادن تایمر به یک مدار اتوماتیک تبدیل نمود که البته اتوماتیک نمودن این سیستم چندان تأثیر قابل توجهی و مثبتی بر روی عملیات نخواهد گذاشت.

بر خلاف دستگاههای پیچیده صنعتی که بعضاً مدارات هیدرولیک مفصلی دارند، خوشبختانه قالب لغزنده از لحاظ سیستم هیدرولیکی بسیار ساده است. علت عمده ای که باعث شده سیستم هیدرولیک قالب لغزنده دائماً روشن نیست. اگر دستگاه قدرت دائماً روشن می بود و وظیفه سنگین بعهده داشت مسائلی از قبیل: گرم شدن روغن، کف کردن روغن، وپیچ و خمهای لوله ها و شیلنگها، افت فشار در طول مسیر، تغییر مقطع عبور روغن و غیره میتوانستند هر یک به تنهایی مشکلات فراوانی بیافرینند. درشکل 28 تصویر یک دستگاه قدرت هیدرولیکی قالب لغزنده را که ساخت کشور روسیه می باشد، ملاحظه می کنید.

در کارهای کوچک لغزنده حتماً لازم نیست که دستگاه قدرت هیدرولیکی مفصلی رد اختیار باشد. اگر حجم کار کم باشد میتوان از دستگاه قدرت هیدرولیکی تاورکرین موجود در کارگاه برای بالا بردن قالب لغزنده استفاده نمود. تاورکرین دارای یک دستگاه قدرت هیدرولیکی است که در زمان نصب قطعات ارتفاعی از آن استفاده می کنند.

گاهی اتفاق می افتد که دستگاه قدرت هیدرولیکی در حین اجرای عملیات با مشکلی مواجه شود. لذا پیشنهاد میشود که حتماً یک دستگاه قدرت یدکی و یا پمپ دستی درکارگاه داشته باشید که اگر اشکالی پیش آید بتوان به اجرای عملیات ادامه داد و یا لااقل اینکه توسط پمپ دستی قالب را مقداری بالا کشید تا بتن درون آن سفت نشود. علاوه بر این در زمانیکه یکی از جکهای لغزنده ر ا تعویض می کنند از پمپ دستی برای هماهنگ نمودن محل جک لغزنده با سایر جکها استفاده می کنند. 29 نمونه یک پمپ دستی را نشان می دهد.

در شکل 30 نمای کلی یک دستگاه قدرت هیدرولیک نشان داده شده است:

دستگاه قدرت هیدرولیکی دارای اجزاء مختلفی بشرح زیر است:

الف – پمپ

ب – دستگاه محرک پمپ

ج- شیرهای کنترل

د- فیلترها

ه – مخزن هیدرولیک

و- تجهیزات کمکی

ز- مدار برقی

ذیلاً به توضیحات مختصری در باره هر یک از اجزاء می پردازیم:

 الف – پمپ

پمپهای هیدرولیکی دارای سیستمهای مختلفی هستند. از جمله پمپهای دانده ای، پره ای پیستونی و غیره که که هر کدام از اینها هم انواع و اقسام دارند. بسته به نظر طراح هیدرولیک صنعتی و وضعیت پمپهای در دسترسی، معمولاً نوع پمپ انتخاب می شود. پمپهای پیستونی برای دست یابی به فشارهای بالاتر از 200 اتمسفر مورد استفاده قرار می گیرند و قمیت آنها نیز گرانتر است. در دستگاه هیدرولیک قالب لغزنده اغلب از پمپهای پره ای و یا دنده ای استفاده می کنند. شکل 31 یک پمپ دنده ای را نشان میدهد.

مهمترین مشخصه ای که برای پمپ بایستی توسط سازنده معرفی شود، دبی فشار نهایی است که پمپ اعمال می کند و این اطلاعات در برورشور کارخانه سازنده پمپ وجود دارد. هر چه پمپ با سرعت بیشتری به گردش درآید مقدار دبی خروجی آن بیشتر خواهد بود. برای اطلاع دقیق تر از مشخصات هر پمپ کارخانه های سازنده بروشور، منحنی بنام منحنی مشخصات پمپ (Characteristice Curves) ارائه می دهند. شکل 32 منحنی مشخصات یک پمپ دنده ای را نشان می دهد.

بسته به اینکه پمپ مورد استفاده دارای چه مشخصات فنی باشد، قدرت و سرعت الکتروموتور مورد نیاز آن محاسبه می گردد. قاعدتاً الکتروموتورهای با سرعت 1400 دور در دقیقه به این منظور مورد استفاده قرار می گیرند. الکتروموتورهای با سرعت بالاتر گرچه دارای قیمت ارزانتری هستند ولی استهلاک آنها بیشتر است. همچنین سرعتهای کمتر از 700 دور در دقیقه در کار مکش پمپ مشکلاتی ایجاد می نماید.

قدرت الکتروموتور را بر مبنای کیلو وات KW و یا اسب بخار hp می سنجند. روی هر الکتروموتور پلاک فلزی وجود دارد که کلیه مشخصات آنرا ذکر کرده است. اتصال پمپ و الکتروموتور بایستی از نوع کوپله مستقیم بوده و با دقت صورت گیرد، و حتی المقدور از اجرای اتصالات بلند و لنگی پرهیز شود. در بازار کوپلینگ های آماده برای اتصال الکتروموتور وپمپ وجود دارد ولی بایستی در نصب آنها دقت نمود تا کاملاً با یکدیگر متقارن و هم محور کوپله گردند. در بعضی موارد به منظور اطمینان از ایجاد یک اتصال دقیق و جلوگیری از لزش، از اتصال کاسه زنگی استفاده میکنند. شکل 33 یک پمپ و الکتروموتور که توسط اتصال کاسه زنگی به یکدیگر کوپله شده اند را نشان می دهد.

 ب- دستگاه محرک پمپ

برای اینکه هیدرولیک بتواند روغن کم فشار را به روغن با فشار زیاد تبدیل کند، بایستی به گردش درآید و لذا دستگاه محرکی مورد نیاز است، قادتاً دستگاه محرک یک الکتروموتور سه فازا ست.

 

(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است

 


دانلود با لینک مستقیم


پایان نامه رشته عمران با موضوع مزایا و معایب استفاده از روش قالب لغزنده عمودی

دانلود پایان نامه مقطع کارشناسی رشته عمران درباره بارگذاری ساختمان

اختصاصی از رزفایل دانلود پایان نامه مقطع کارشناسی رشته عمران درباره بارگذاری ساختمان دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه مقطع کارشناسی رشته عمران درباره بارگذاری ساختمان


دانلود پایان نامه مقطع کارشناسی رشته عمران درباره بارگذاری ساختمان

تعداد صفحات پایان نامه: 140 صفحه

در این پست می توانید متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید:

 

 گفتار نخست

شناخت بارها و تعاریف سامانه‌های انتقال بار و بارگذاری

 1-1) کلیات

سازه‌های عمرانی به عنوان یک فرآورده تولیدی و صنعتی با کاربرد مشخص بوده که با توجه به نوع کاربری و استفاده موردنظر، بارهای مشخصی به آن وارد می‌شود. این سازه عمرانی اگر پل باشد، مطمئناً بارهای وارده بر آن با یک سد یا ساختمان مسکونی متفاوت خواهد بود. در پل بار اصلی وارده بر سازه آن، علاوه بر وزن پل، وزن خودروهای عبوری و همچنین بار فشار سیلاب‌ها می‌باشد، در حالی که در سدها بار اصلی، فشار آب پشت سد و خطرات ناشی از لرزش‌های زمین لرزه می‌باشند. در یک ساختمان که کاربری مسکونی دارد، نیز مقادیر بارهای اصلی با ساختمانی که کاربری درمانی یا تجاری دارد، متفاوت خواهد بود.

به عنوان یک تعریف کلی، بارگذاری تعیین حداکثر بار وارد بر یک سازه در مدت سن سودمندش با ریسک و خطر قابل پذیرش می‌باشد. بطور کلی سازه‌های موجود را به سه دسته می‌توان بخش کرد که عبارتند از:

  1. سازه‌های عادی و رایج، ساختمان‌های مسکونی، بیمارستان‌ها، مدارس و … بوده و دارای حداقل سن 50 سال می‌باشد. در این نوع سازه‌ها، ریسک و خطر قابل قبول بین 10-5% است، احتمال خطا و اشتباه در بارگذاری و تعیین بار این نوع سازه‌ها تقریباً نزدیک به صفر می‌باشد، چرا که به وفور ساخته شده و بارها تا اندازه‌ زیادی شناخته می‌شوند.
  2. سازه‌های صنعتی نظیر ساختمان‌های کارخانه‌ها، سوله، دکل‌های انتقال برق و … بوده و دارای حداقل 25 سال سن می‌باشند. در این دسته از سازه‌ها ریسک و خطر قابل قبول بین 1-5/0% است و احتمال خطا در بارگذاری و تعیین بار این نوع سازه‌ها تا اندازه‌ای وجود دارد.
  3. سازه‌های عمرانی نظیر سدها، پل‌ها، اسکله‌ها و .. بوده و دارای حداقل سن 200-50 سال می‌باشند. در این دسته‌ از سازه‌ها ریسک قابل قبول بین 1-5/0% است و با نظر به اینکه با توجه به شرایط ساختگاهی (به ویژه در سدها) نوع بارگذاری، طراحی و محاسبات متغیر بوده و به شدت تاثیرپذیر است، از ضرایب اطمینان بالایی در تعیین بارها استفاده می‌شود.

1-2) معرفی انواع بارها

بارهای وارده بر سازه با توجه به منبع و منشاء انتشار بارها و رفتارها و تغییرات آنها دسته‌بندی می‌شوند. به هرحال، با توجه به جمیع شرایط دسته‌بندی زیر را می‌توانیم برای بارها داشته باشیم:

  1. بار مرده (Dead Load):

این نوع بار به دلیل ثابت بودن مقدار آن تا انتهای سن و عمر سازه به این نام نامیده می‌شود. وزن اجزای سازه‌ای نظیر سقف، تیر و ستون‌ها، تیغه‌بندی، کف‌سازی‌ها و … به عنوان بار مرده شناخته شده‌اند و می‌توان این اجزا را با توجه به ابعاد هندسی و وزن حجمی و جزئیات اجرایی و فنی آنها با بهره‌گیری از جداول وزن مصالح که در مبحث مقررات ملی ساختمان ارائه شده است، بدست آورد.

در تعیین این بار، بویژه در سازه‌های رایج مسکونی باید دقت زیادی داشت و دلیل آن نیز سهم زیاد این نوع بار در کل بارهای وارده بر سازه می‌باشد. شیوه و روش محاسبه این نوع بار در گفتار دوم ارائه خواهد شد.

  1. بار زنده (Live Load ):

بار زنده یا سربار در بیشتر مواقع با توجه به نوع کاربری سازه مشخص شده و به دو گونه کلی ایستا و ضربه‌ای دسته‌بندی می‌شود. برای نمونه بار زنده در ساختمان‌های مسکونی در حالت ایستا، وزن انسان‌ها و بارهای متغیر وارده بر سازه مسکونی بوده و در حالت ضربه‌ای، وزن آسانسور یا بالابر می‌باشد. مطمئناً خوانندگان درنظر خواهند داشت که بار زنده یک پل با بار زنده یک سد متفاوت است.

  1. بارهای حین ساخت (As Built Load):

بارهای حین ساخت با توجه به روش اجرا و مراحل اجرایی سازه تعیین می‌شوند. در بسیاری از مواقع در ساخت و سازها‌، بارهای حین ساخت بیش از بارهای بهره‌برداری سازه بوده و ضرورت دارد که طراحی سازه برای این حالت بار و این نوع بارگذاری بررسی شود. در اجرای پل‌ها، از جراثقال‌هایی استفاده می‌شود که وزنشان بیش از وزن و بارهای حالت بهره‌برداری می‌باشد.

در ساختمان‌های مسکونی نیز باید دال و سقف برای محل‌های دپوی مصالح (گچ، سیمان و ماسه) طراحی و کنترل شود.

  1. بار برف (Snow load):

بار برف مربوط به سقف‌های پوشاننده ساختمان بوده و با توجه به شرایط جغرافیایی محل ساختمان متغیر می‌باشد. مطمئناً در مناطق برف‌گیر و کوهستانی، بار برف بیشتر و در مناطق گرم و کویری بار برف بسیار کم می‌باشد. در این رابطه مبحث ششم، مقررات ملی ایران نقشه پهنه‌بندی ریزش برف را تهیه نموده است.

  1. بار یخ (Ice load):

در مناطق سردسیر، احتمال یخبندان آب در بعضی سازه‌های خاص می‌باشد که باید درنظر گرفته شود.

  1. بار باد (Wind load):

منشاء باد، تغییرات آب و هوایی می‌باشد. در بسیاری از حالت‌ها، باد همراه با آب بوده و اثرات فرسایشی آب نیز باید درنظر گرفته شود. بار باد تحت عنوان فشار ناشی از وزش باد نیز بیان شده و مقدار فشار باد به صورت یک نمودار در سطح زمین کمتر و در ارتفاع بیشتر می‌شود. همچنین سرعت و فشار باد در مناطق شهری با ساختمان‌های بلند کمتر از فشار باد در دشت باز و یا در ارتفاع خواهد بود. فرمول‌های زیر را می‌توانیم جهت رابطه بین فشار باد و سرعت آن بنویسیم:

P=1/2ρ.v2

P=0.00256v2 lb/ft2

P=0.0625v2 kg/m2

P: فشار                    v: سرعت جابجایی                        ρ: جرم مخصوص هوا

سرعت باد در سطح زمین، کمتر از ارتفاع بوده و با رابطه زیر تغییر می‌کند.

نمایه (1-1): نمودار تغییر سرعت باد با ارتفاع

بار باد در ایران، جزء بارهای مهم برای برخی مناطق و بعضی از انواع ساز‌ه‌ها می‌باشد. سازه‌های سبک یا سازه‌های با سقف سبک ضروری است برای بار باد کنترل شوند. اجزای غیرسازه‌ای نظیر تیغه‌های رو به باد، دودکش‌ها، نرده‌ها، دیوارهای محوطه و حیاط‌سازی و … از مواردی می‌باشند که باید به صورت مستقل از سازه بررسی شوند. در گفتار پنجم توضیحات مفصلی در ارتباط با بار باد داده خواهد شد.

  1. بار زلزله (Earthquake load):

زلزله و زمین لرزه، پدیده‌ای طبیعی است که پیامد سرد شدن کره زمین می‌باشد. کره زمین دارای هسته‌ای مذاب و پوسته‌ای سرد و سخت شده است که ضخامت این پوسته در نقاط کوهستانی به 20 کیلومتر و در نقاط قعر اقیانوس‌ها به 5 کیلومتر می‌رسد. در واقع پوسته زمین از صفحات و تکه‌های جدا از هم تشکیل شده و به فصل مشترک این صفحات و تکه‌ها گسل (Fault) گفته می‌شود. گسل‌ها خود به دو دسته فعال و غیرفعال تقسیم می‌شوند. گسل‌های فعال عموماً به گسل‌هایی گفته می‌شود که در دوازده‌ هزار سال گذشته فعالیت داشته و لایه‌های آبرفتی زمین از فعالیت آنها تاثیر پذیرفته است.

بطور کلی باید از احداث ساختمان تا فاصله 5 کیلومتری در مجاورت گسل‌های فعال و محل‌هایی که امکان بوجود آمدن شکستگی در سطح زمین هنگام زلزله وجود دارد، اجتناب شود و تا فاصله 50 کیلومتری از گسل، خطر لرزه‌خیزی بالایی برای ساختمان درنظر گرفته می‌شود.

در کل‌ باری به نام بار زمین‌لرزه وجود نداشته و زمین‌لرزه فقط در ساختمان ایجاد لرزش نموده شتاب و تغییر شکل‌هایی در آن ایجاد می‌کند که حاصلضرب جرم در شتاب زلزله (mag)، نیروی زلزله می‌باشد. بار زلزله، وابسته به سه عامل اصلی فاصله ساختمان تا کانون زلزله، جنس خاک بستر ساختمان و ویژگی‌های دینامیکی سازه ساختمان می‌باشد.

در کل، در زمین‌هایی که ممکن است بر اثر زلزله ناپایداری ژئوتکنیکی نظیر روانگرایی در خاک‌های ماسه‌ای سست، نشست زیاد، زمین لغزش، سنگ ریزش یا پدیده‌های مشابه ایجاد گردد و یا در زمین‌های متشکل از خاک رس سست و ماسه‌ای اشباع باید امکان ساخت و شرایط لازم برای ساخت بنا با بهره‌گیری از مطالعات ساختگاه و آزمایش‌های ویژه بررسی گردد.

در رابطه با محاسبه بار زمین‌لرزه، آیین‌نامه 2800 زلزله مورد استفاده قرار گرفته و در ارتباط با نحوه محاسبه بار زلزله نیز در درس مهندسی زلزله بحث و بررسی بیشتری صورت می‌گیرد.

  1. بار حرارتی (Termal load):

مصالح ساختمانی مورد استفاده در ساختمان‌ها، دارای انبساط طولی و عرضی در اثر حرارت و گرما می‌باشد. هنگامی که بر فرض مثال، یک تیرآهن فولادی از دو انتها بسته شده باشد، به دلیل عدم توانایی در تغییر شکل‌های گرمایی، دارای تغییر شکلی برابر ∆L=λL∆t خواهد بود، در حالی که عملاً‌ به دلیل بسته بودن، =0∆ می‌باشد. بنابراین در این حالت نیروی p در این تیرآهن ایجاد خواهد شد که می‌توان آن را از رابطه بدست آورد. یعنی:.

نیروها‌ و بارهای حرارتی اکثراً در ساختمان‌هایی که دارای طول زیادی می‌باشند، ایجاد می‌شود. به همین دلیل با توجه به طول این ساختمان‌ها و شدت گرمایی محیط سعی می‌‌شود بین طول‌های 50-30 متر حتماً یک درز جدایش و گرمایی درنظر گرفته شود. اندازه این درز بین 10-3 سانتیمتر بوده و به آن Expansion joint نیز گفته می‌شود.

در محل درز جدایش، ضروری است دو ستون کنار هم و با فاصله درز جدایش درنظر گرفته شود که در شکل زیر این مطلب به روشنی نمایش داده شده است:

نمایه (1-2): نمایشی از درز انبساط یا اجرایی در دو ستون کنار هم

نوع دیگر بار گرمایی، بار گرمایی عرضی یا گرادیان گرمایی می‌باشد. این بار در سازه‌های ضخیمی که در معرض تابش و نور مستقیم آفتاب قرار دارند، رخ می‌دهد. در این سازه‌ها سطح در معرض نور آفتاب، دارای درجه گرمایی 60 درجه سانتیگراد در وسط روز و سطح زیرین دارای درجه گرمای 30 درجه سانتیگراد بوده و این اختلاف درجه گرما، در صورت بسته بودن سازه، مطمئناً ایجاد تنش‌های گرمایی در عضو و سازه خواهد نمود.

نمونه روشن این پدیده را می‌توان در شاه‌تیرهای اصلی پل‌ها دید. این شاه‌تیرها در وسط روز در صورت بسته بودن از دو سر شاه‌تیر مطمئناً متحمل تنش‌های اضافی خواهند شد. نمایش این حالت در شکل زیر ارائه شده است.

 

نمایه (1-3): نمایشی از تغییرات حرارت در یک پل (گرادیان گرمایی)

 

به همین جهت ضرورت دارد در دو انتهای شاه‌تیر پل‌ها از درزهای جدایش گرمایی بین تیرنشیمن‌ شاه‌تیر و شاه‌تیر (Girder) استفاده نمود.

 

  1. بارهای ناشی از فشار آب و رانش خاک:

خاک و آب به دلیل نداشتن ایستایی، روی بدنه و جداره ظروف نگهدارنده آنها فشار وارد می‌کنند. این جداره از نظر سازه‌ای می‌تواند دیواره حایل نگهدارنده حجم مشخصی از خاک، دیواره زیرزمین‌ها، دیواره استخر و … باشد. فشار خاک با توجه به مشخصات مکانیکی آن تعیین شده و در هر حالت نباید کمتر از فشار مایع، معادل با وزن مخصوص 500 دکانیوتن بر مترمکعب باشد. در صورتی که خاک مجاور دیوار در معرض سربارهای متحرک یا ثابت قرار گیرد، تاثیر این سربارها در افزایش میزان فشار پشت دیوار حایل باید در محاسبات درنظر گرفته شود.

برای محاسبه فشار آب از رابطه استفاده می‌شود.

 

(الف)                                                        (ب)

نمایه (1-4):        الف) نمایشی از فشارهای وارده توسط آب

ب) نمایشی از فشارهای فعال و غیرفعال خاک

در محاسبه فشار خاک، ضرایب Kp, Ka نیز وارد محاسبات می‌شود. نحوه محاسبه Kp, Ka و انواع روش‌های محاسبه و طراحی دیوارهای حائل در دروس مهندسی پی بررسی می‌شود.

در کل برای طراحی دیوارهای حایل و شالوده‌های آنها ضرایب اطمینان در مقابل واژگونی و لغزش پی به ترتیب برابر با 75/1 و 5/1 در نظر گرفته می شود.

البته باید درنظر داشت که در بسیاری موارد، تراز آب زیرزمینی، بالاتر از کف زیرزمین بوده و اثر آن باید در محاسبه فشار وارد بر دیوار دیده شود و در این موارد باید برای فشار خاک با وزن مخصوص خاک غوطه‌ور و اشباع، همراه با فشار کامل ایستایی آب زیرزمینی طراحی شود. در طراحی کف زیرزمین در این حالت، اثر فشار برکنش آب زیرزمینی (Uplift) باید به صورت فشار کامل ایستایی بر تمام کف درنظر گرفته شود. این فشار باید بر اساس اختلاف تراز زیرکف نسبت به بالاترین تراز آب زیرزمینی محاسبه شود. ضریب اطمینان موجود در مقابل فشار برکنش کف، حداقل برابر5/1 درنظر گرفته می‌شود.

نمایه (1-5): نمایش فشار برکنش کف زیرزمین ناشی از آب زیرزمینی (uplift)

 

  1. بارهای انفجاری:

اتاق‌های کنترل مهم (نظیر کنترل شیرهای نفت، کنترل مرکزی نیروگاه‌ها و …) و پناهگاه‌های هنگام جنگ در برابر انفجار باید مقاوم و پایدار باشند. در تعیین بارهای انفجاری از استاندارد US.ARMY-TM5 استفاده می‌شود. به عنوان نمونه برای اتاق کنترل، باری معادل انفجار 250Ib مواد منفجره به فاصله 50 فوت (15 متری) برای بارگذاری و تحلیل استفاده می‌گردد:

نمایه (1-6): نمایش چگونگی اعمال بارهای انفجاری بر اتاقک

در جزیره خارک جهت تاسیسات و اتاق‌های کنترل لوله‌های نفتی از فاصله انفجاری برابر 8 متر جهت مواد منفجره استفاده شده است و حتی‌الامکان به صورت مدفون در زیر خاک طراحی شده‌اند.

1-3) مبانی احتمالاتی بارگذاری سازه:

بارهای غیردائمی که در هنگام استفاده و بهره‌برداری از ساختمان به آن وارد می‌شود، شامل بارهای زنده، برف، باد، زلزله و … می‌باشند که با توجه به نوع کاربری ساختمان یا هر بخش از آن و مقداری که احتمال دارد در طول سن ساختمان به آن وارد گردد، تعریف می‌شوند و می‌توان مقادیر برگزیده برای بارگذاری به عنوان مقادیر احتمالاتی که با درصد زیادی احتمال وارد شدن به ساختمان را دارند، درنظر داشت.

بنابراین ضرورتاً آیین‌نامه‌های تعیین بارهای ساختمانی بر اساس تجزیه و تحلیل داده‌های آماری مربوط به بارهای زنده، باد، زلزله، برف و …، بارها را تعیین و پیشنهاد می‌کنند که در زیر به صورت مختصر و گذرا به آن می‌پردازیم:

  • مشاهدات آماری:

یکی از روش‌های نمایش مشاهدات آماری، استفاده از نمودارهای ستونی یا میله‌ای می‌باشد (Bar chart or histogram).

 

(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است

 


دانلود با لینک مستقیم


دانلود پایان نامه مقطع کارشناسی رشته عمران درباره بارگذاری ساختمان

دانلود پایان نامه رشته عمران درباره پروژه تخصصی روشهای مقاوم سازی

اختصاصی از رزفایل دانلود پایان نامه رشته عمران درباره پروژه تخصصی روشهای مقاوم سازی دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه رشته عمران درباره پروژه تخصصی روشهای مقاوم سازی


دانلود پایان نامه رشته عمران درباره پروژه تخصصی روشهای مقاوم سازی

در این پست می توانید متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید:

 

دانشگاه آزاد اسلامی واحد اراک

دانشکده فنی ومهندسی

گروه عمران

 پروژه تخصصی

عنوان پروژه :

روشهای مقاوم سازی

 استادراهنما:

جناب آقای مهندس توسلی

 دانشجو:  

حمیدرضا شاهنگی          

 پیشگفتار

«وا… جعل لکم من بیوتکم سکنا» خداوند خانه‌های شما را محل آسایش شما قرار داده است.

«سوره مبارکه نحل آیه 80»

با استناد به آیه فوق و آیه‌های مشابه آن در می‌یابیم که آسایش و فراهم کردن آن چقدر حائز اهمیت است که در کتاب ا… توسط پروردگار متعال به آن اشاره شده است.

مقاوم سازی و فراهم نمودن امنیت و پایداری سازه‌ها یکی از پارامترهای بسیار مهم در مهندسی امروز به شمار می‌رود.

احداث یک سازه شیک و قابل توجه و چشم‌گیر آنقدر اهمیت ندارد که بنای یک سازه مقاوم اهمیت دارد.

در این پروژه و تحقیق به مسائل مربوط به مقاوم سازی و انواع روشهای آن پرداخته و اصول مقاوم سازی ساختمانها مورد بررسی قرار می‌گیرد.

کشور ایران، با قرار داشتن در کمربند لرزه خیز آلپ – هیمالیااز نظر خط زمین لرزه، از جمله کشورهای آسیب پذیر جهان به شمار می‌آید.

زلزله‌های بزرگی که خصوصاً در سالیان اخیر رخ داده خود گویا و گواه این مطلب است.

بطور مثال زلزله‌های زرند، بم، آوج، منجیل و…

مطالب این پرژوه در خصوص انواع روشهای مقاوم سازی در سازه‌های مختلف است. که گردآوری آنرا در دو گروه مقاوم سازه‌های بتنی و سازه‌های فولادی انجام داده‌ام.

مقاوم سازی

تعریف:

مقاوم سازی عبارتست از مجموعه اقداماتی که سبب افزایش سختی و تقویت عنصر در برابر نیروهای وارد به سازه می‌گردد.

تعریف بهسازی:

مجموعه راهکارها و تمهیداتی است که بتوان رفتار عضو یا سازه را در برابر نیروهای جانبی ناشی از زلزله بدون نیاز به تقویت مستقیم اعضا بهبود بخشید.

هدف از بهسازی و مقاوم سازی:

هدف بهسازی عبارت از انتخاب سطوح عملکرد مورد انتظار تحت اثر زلزله‌های با سطح خطر معین می‌باشد.

از نظر کلی به شش دسته زیر تقسیم‌بندی می‌شوند:

دسته اول: بهسازی و مقاوم سازی مبنا

در این حالت تحت اثر زلزله سطح خطر – I سطح عملکرد ایمنی جانبی C-3 باید برای ساکنین ساختمان تأمین گردد.

دسته دوم: بهسازی و مقاوم سازی مطلوب:

در این سطح از بهسازی و مقاوم سازی انتظار می‌رود که ابتدا هدف بهسازی تأمین گردد و دوم ساختمان تحت اثر زلزله سطح خطر II در سطح عملکرد آستانه فرو ریزش (E-S) قرار گیرد.

دسته سوم: بهسازی و مقاوم سازی ویژه:

در این سطح سازه مقاوم شده نسبت به بهسازی مطلوب از تراز عملکرد بیشتری تحت همان سطوح خطر زلزله قرار گیرد.

دسته چهارم: بهسازی و مقاوم سازی محدود:

در صورتیکه به دلیل محدودیت‌های اقتصادی و مالی امکان بهسازی مبنا میسر نباشد ممکن است بهسازی در سطح عملکرد پایین‌تری در نظر گرفته شود.

دسته پنجم: بهسازی و مقاوم سازی موضعی:

چنانچه به دلایل اجرائی و یا مالی امکان بهسازی تمام سازه میسر نباشد عملیات بهسازی ممکن است در چند قسمت انجام شود. و در اینصورت در هر مرحله نباید خللی در تراز عملکرد سازه یا ادامه عملیات ایجاد شود.

دسته ششم: عدم بهسازی و یا مقاوم سازی:

برآورده نمودن ضوابط آئین نامه 2800 و یا عدم صرفه اقتصادی می‌تواند بر عدم بهسازی و یا مقاوم سازی ساختمان دلالت داشته باشد.

راهکارهای مقاوم سازی لرزه‌ای:

راههای زیر را می‌توان به صورت منفرد یا در ترکیب با یکدیگر برای بهسازی و مقاوم سازی در سازه به کار بست.

1- تأمین پایداری لازم برای مجموعه سازه

2- تغییر کاربری سازه

3- استخدام سیستم‌های غیرفعال اتلاف انرژی

4- کاهش جرم سازه

5- به کارگیری سیستم‌های جداسازی لرزه‌ای

6- تأمین سختی جانبی لازم برای کل سازه

7- اصلاح اجزایی از سازه که عملکرد مناسبی در برابر زلزله ندارند

8- حذف و یا کاهش بی‌نظمی در ساختمان

بهسازی در سازه‌ها باید به گونه‌ای صورت گیرد که در صورت ایجاد خرابی در بخشی از اعضا سازه تخریب گسترش نیابد به طوری که با تخریب یک یا چند عضو کل سازه ناپایدار نشود.

شرح موارد فوق:

1- هنگامی که سازه دارای ضعف فراگیر است به طوری که در اکثر اعضای آن نسبت تقاضا به ظرفیت و تغییر شکلهای غیرخطی بزرگ باشد به جاست که برای کل مجموعه ساختمان، سیستم باربری جانبی با ظرفیت کافی ایجاد شود.

برای این منظور می‌توان قابهای مهاربندی شده، قابهای نقشی یا دیواره‌های برشی به سازه مذکور اضافه نمود.

در چنین شرایطی اندر کنش سازه موجود و سیستم باربر جانبی جدید باید مورد توجه قرار گیرد.

چنانچه قاب مهاربندی شده یا دیوار برشی دارای سختی زیادی باشد ممکن است بخش قابل توجهی از بارهای جانبی را به خود معطوف کند.

آگر افزایش ظرفیت با اضافه کردن قاب خمشی ایجاد شود به دلیل نرمی قاب اندر کنش سازه موجود و قاب خمشی موجب توزیع بار بین هر دو سیستم می‌گردد.

ح) تغییر کاربری سازه یکی دیگر از روشهای بهسازی است.

چنانچه امکان بهسازی یک ساختمان برای سطح عملکرد مورد نیاز میسر نباشد یا هزینه آن قابل توجه نباشد با تغییر کاربری می‌توان سطح عملکرد مورد نیاز را پایین آورد و نیاز به بهسازی را حذف و یا به حداقل رساند.

3) استخدام و به کارگیری سیستم‌های جذب انرژی برای کنترل و کاهش تغییر شکل ساختمان یکی از روشهای بهسازی است. در مجموعه هایی که دارای سختی جانبی کافی نیستند با تعبیه اجزاء جذب انرژی در سازه می‌توان تغییر شکلهای ساختمان را محدود کرد.

برای این منظور اجزا خاص طراحی شده اند که با ایجاد اصطکاک و یا تغییر شکل چیزی یا استفاده از ویسکوزیته سیالات بخشی از انرژی سازه را جذب می‌کنند بدین ترتیب تغییر شکلهای سازه محدود می‌شود.

4- در سازه هایی که دارای ضعف کلی از نظر سختی جانبی یا ظرفیت باربری می‌باشند یکی از راهکارهای مفید برای بهسازی کاهش جرم ساختمانی است.

با کاش جرم می‌توان میزان تغییر شکلها و نیروهای داخلی ناشی از زلزله را در اعضا تقلیل داد.

برای این منظور می‌توان با تخریب طبقات فوقانی تغییر نمای سازه، تغییر مشخصات دیوارهای داخلی یا انتقال تجهیزات و انبارهای سنگین به نقاط دیگر جرم سازه را کاهش داد.

5) به کارگیری سیستم‌های جدا سازی لرزه‌ای راهکار مناسبی برای کاهش اثرات زمین لرزه بر روی سازه می‌باشد.

هنگامی که حفاظت از تجهیزات مهم و اجزا غیر سازه‌ای مدنظر باشد با استفاده از روشهای جداسازی لرزه‌ای می‌توان انتقال انرژی موجود در حرکات ارتعاشی زمین را به ساختمان محدود نمود.

جهت این منظور تکیه گاههای مناسب با شکل پذیری بسیار زیاد در ساختمان تعبیه می‌شود.

هنگام وقوع زلزله تغییر شکلهای ساختمان در تکیه گاهها که قابلیت شکل پذیری زیادی دارند متمرکز شده و سازه مانند جسم صلب با تغییر شکلهای کوچک ارتعاش می‌کند.

این روش برای مقاوم سازی ویژه ساختمانها مناسب می‌باشد.

روش جداسازی برای ساختمانهای کوتاه و نسبتاً صلب مؤثر می‌باشد و برای ساختمانهای بلند و نرم کارایی ندارد.

6) چنانچه مشخص شود که ضعف ساختمان در کمبود سختی جانبی آن و در نتیجه تغییر مکانهای زیاد می‌باشد می‌توان با افزایش مهاربندی‌ها یا دیوارهای برشی، سختی جانبی را برای سازه فراهم کرد.

7) زمانی که تعدادی از اعضای سازه دارای ظرفیت کافی برای حمل نیروها یا تحمل تغییر شکلها نیستند می‌توان به صورت موضعی نسبت به تقویت اعضا و اتصالات آنها به سازه اقدام نمود به نحوی که ظرفیت کافی برای حمل نیروها و تحمل تغییر شکلها در این اعضا ایجاد گردد.

8) حذف یا کاهش بی نظمی در سازه می‌تواند یک راه مناسب برای بهسازی سازه هایی باشد که به دلیل بی نظمی فاقد سطح عملکرد مطلوب می‌باشد.

برای این منظور لازم است نتایج تحلیل مدل سازه مورد بررسی قرار گیرد و با توجه به میزان تغییر شکلها، نسبت تقاضا به ظرفیت، توزیع تغییر شکلهای غیرخطی و بی نظمی سازه‌ها از نظر توزیع سختی، جرم و ظرفیت اعضا مشخص می‌شود.

نامنظمی در سازه معمولاً به دلیل عدم پیوستگی در اجزا باربر جانبی بوجود می‌آید.

در چنین شرایطی با ایجاد تغییراتی در سیستم باربری جانبی ممکن است بتوان از نامنظمی سازه کاست.

در ساختمانهایی که دارای طبقه نرم هستند می‌توان با اضافه نمودن مهاربندی ها، سختی جانبی را متناسب با طبقات دیگر افزایش داد.

در مورد بی نظمی‌های پیچشی نیز می‌توان با اضافه کردن عناصر باربر جانبی فاصله مرکز جرم و سختی را کاهش داد.

ایجاد درز جدایی در سازه نامنظم و تبدیل آن به دو یا چند ساختمان کوچکتر اما منظم یکی دیگر از روشهای بهسازی است.

مقاوم سازی پی ها

مقاوم سازی سازه‌های موجود و عملکرد لرزه‌ای آنها بدون توجه به پی‌ها و مخاطرات ژئوتکنیکی محتمل امکانپذیر نمی باشد.

غالباً پی‌ها در ساختارهایی که پتانسیل جابجایی زمین در اثر گسلش، زمین لغزشی یا روانگرایی وجود ندارد، عملکرد خوبی دارند.

از سویی دیگر معمولاً مقاوم سازی در تراز شالوده بدلیل محدودیت فضای کاری ناشی از وجود ساختمان بسیار پرهزینه می‌باشد.

از این رو تقبل هزینه‌های گزاف و سنگین مقاوم سازی آن با توجه به نقش آن در پاسخ لرزه‌ای کل سازه باید بدقت مورد ارزیابی قرار گیرد.

مخاطرات ساختگاهی

خطرات ساختمانی شامل گسلش، روانگرایی، نشست ناهمگونی و زمین لرزه می‌باشد.

کاهش مخاطرات ساختگاهی:

در برخی شرایط امکان بهبود عملکرد لرزه‌ای ساختگاه و سازه با هزینه‌های معقول وجود دارد و در برخی حالات دیگر کاهش خطرات ممکن است از نظر اقتصادی توجیه پذیر نباشد.

گسلش:

حرکات بزرگ توسط گسلها غالباً از نظر اقتصادی قابل کنترل نخواهد بود.

اگر با توجه به سطح لرزه‌ای مورد نظر میزان حرکت افقی و قائم گسل برای هر یک از اجزای سازه، شامل خرد سازه و شالوده آن قابل قبول نباشد اجزای مذکور باید تا حد مقاومت لرزه‌ای مورد نیاز سخت و مقاوم گردند.

روانگرایی:

راه حل اول ـ تقویت سازه

راه حل دوم ـ تقویت پی

راه حل سوم ـ بهسازی خاک

نشست ناهمگون:

تکنیک بهسازی خاک مانند آنچه یاد شد می‌تواند برای کاهش خطر نشست ناهمگون که از تراکم خاکهای سست نتیجه می‌شود مورد استفاده قرار گیرد.

 زمین لغزه:

به طور کلی روشهای پایدار سازی شیبها را می‌توان در چهار گروه زیر تقسیم بندی نمود.

ـ تغییر هندسه شیب به منظور کاهش نیروهای محرک و یا افزایش نیروهای مقاوم

ـ کنترل آبهای سطحی جهت کاهش نیروهای تراوشی

ـ کنترل تراوش جهت کاهش نیروهای محرک

ـ تقویت شیب جهت افزایش نیروهای مقاوم.

 

(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است

 


دانلود با لینک مستقیم


دانلود پایان نامه رشته عمران درباره پروژه تخصصی روشهای مقاوم سازی

دانلود پروژه رشته برق - تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری با فرمت ورد

اختصاصی از رزفایل دانلود پروژه رشته برق - تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری با فرمت ورد دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه رشته برق - تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری با فرمت ورد


دانلود پروژه رشته برق - تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری با فرمت ورد

فهرست:  

       – مقدمه....................................................................................................2

فصل اول :

       – اساس کاردستگاههای اندازه‌گیری ......…………….…......………........…….... 3      

       – اساس کارکنتورالقایی تکفاز..........................................................................5

فصل دوم :

–آشنایی با میکروکنترلرهای AVR .................................................................6

     – مشخصات میکروکنترلرATmega16...........................................................9

  • مشخصات میکروکنترلرATmega8...........................................................11

فصل سوم :

EEPROM –      های خانواده AT24CXX..........................................................13

–      ارتباط سریال دو سیمه I2C) یا (TWI...........................................................15

       – صفحه کلید ماتریسی ................................................................................16

فصل چهارم :

     – برنامه نرم افزاری شارژر.........................................................................17

     – طرح شماتیک سخت افزارشارژر................................................................25

       – برنامه نرم افزاری کنتور..........................................................................26

       – طرح شماتیک سخت افزارکنتور..................................................................31


دانلود با لینک مستقیم


دانلود پروژه رشته برق - تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری با فرمت ورد