رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه مدل سازی و آنالیز خواص مکانیکی نانولوله های کربنی. doc

اختصاصی از رزفایل پروژه مدل سازی و آنالیز خواص مکانیکی نانولوله های کربنی. doc دانلود با لینک مستقیم و پر سرعت .

پروژه مدل سازی و آنالیز خواص مکانیکی نانولوله های کربنی. doc


پروژه مدل سازی و آنالیز خواص مکانیکی نانولوله های کربنی. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 225 صفحه

 

چکیده:

از آنجائیکه شرکت های بزرگ در رشته نانو فناوریمشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی ومحیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشندبیشتر توسعه یافته اند.

پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.

در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاهمختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:

  1. مدل انرژی- معادل
  2. مدل اجزاء محدود بوسیله نرم افزار ANSYS
  3. مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB

مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگدر جهت های محوری و محیطی بدست آمده است.

درمدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی،نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.

درمدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.

اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایهمورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنیتنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لولهافزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.

نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.

واژه های کلیدی: نانولوله های کربنی ، خواص مکانیکی، محیط پیوسته ، تعادل- انرژی ، اجزاء محدود ، ورق گرافیتی تک لایه،ماتریس سختی.

 

مقدمه:

نانو فناوری عبارت ازآفرینش مواد، قطعات و سیستم های مفید با کنترل آنها در مقیاس طولی نانو متر و بهره برداری از خصوصیات و پدیده های جدید حاصله در آن مقیاس می باشد. به عبارت دیگر فناوری نانو، ایجاد چیدمانی دلخواه از اتم ها و مولکول ها و تولید مواد جدید با خواص مطلوب است. فناوری نانو، نقطه تلاقی اصول مهندسی، فیزیک، زیست شناسی، پزشکی و شیمی است و به عنوان ابزاری برای کاربرد این علوم و غنی سازی آنها در جهت ساخت عناصر کاملاً جدید عمل می کند.

 ازلحاظ ابعادی، یک نانو متر اندازه ای برابر 9-10 متر است (شکل 1-1) . این اندازه تقریباً چهار برابر قطر یک اتم منفرد می باشد. خصوصیات موجی (مکانیک کوانتومی) الکترونها در درون مواد و اندرکنشهای اتمی، بوسیله ی تغییرات مواد در مقیاس نانو متری، تحت تأثیر قرار می گیرند. با ایجاد ساختارهای نانو متری، کنترل خصوصیات اساسی مواد مانند دمای ذوب، رفتار مغناطیسی و حتی رنگ آنها، بدون تغییر ترکیب شیمیایی ممکن خواهد بود. به کارگیری این پتانسیل، باعث ایجاد محصولات و فناوری های جدید با کارایی بسیار بالا خواهد شد که قبلاً ممکن نبوده است. سازمان دهی سیستماتیک ماده در مقیاس طولی نانو متر، مشخصه کلیدی سیستم های زیستی است.

ساختارهای نانو، نظیر ذرات نانو و نانو لوله ها، دارای نسبت سطح به حجم خیلی بالایی اند، بنابراین اجزای ایده آلی برای استفاده در کامپوزیت ها، واکنش های شیمیایی و ذخیره از انرژی هستند.ازآنجا که نانوساختارها خیلی کوچک اند، می توانند در ساخت سیستم هایی بکار برده شوند که چگالی المان خیلی بیشتری نسبت به انواع مقیاس های دیگر دارند. بنابراین قطعات الکترونیکی کوچک تر، ادوات سریع تر، عملکردهای پیچیده ترو مصرف بسیار کمتر انرژی را می توان با کنترل واکنش و پیچیدگی نانو ساختار، بطور همزمان بدست آورد.

در حال حاضر، نانو فناوری یک تکنولوژی توانمند است، اما این پتانسیل را دارد که تبدیل به یک تکنولوژی جایگزین شود. فناوری نانو نه یک فناوری جدید، بلکه نگرشی تازه به کلیه ی فناوری های موجود است و لذا روش های مبتنی بر آن، در اصل همان فناوری های قبلی هستند که در مقیاس نانو انجام می شوند.

مراکز علمی و دانشگاهی با آگاهیازتوانایی های وقابلیت های نانو فناوری به تحقیق و پژوهش در این زمینه می پردارند. تفاوت هایی که در سال های اخیر در زمینه ی نانو بوجود آمده است، حاکیازافزایش رغبت به این حوزه می باشد. در گذشته، تحقیقات بر اساس علایق و تخصص های محقق پیش می رفت، اما اکنون اغلب کشورها دارای برنامه های مدون و راهبردی مشخص در این زمینه هستند و مراکز علمی و تحقیقاتی خود را مامور پیش برد این برنامه ها کرده اند.

 

فهرست مطالب:

فهرست علائم

فهرست جداول      

فهرست اشکال

چکیده

فصل اول

مقدمه نانو           

مقدمه    

فناوری نانو         

معرفی نانولوله‌های کربنی    

ساختار نانو لوله‌های کربنی   

کشف نانولوله       

تاریخچه 

فصل دوم

خواص و کاربردهای نانو لوله های کربنی         

2-1 مقدمه          

2-2 انواع نانولوله‌های کربنی

2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT)   

2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT)  

2-3 مشخصات ساختاری نانو لوله های کربنی    

2-3-1 ساختار یک نانو لوله تک دیواره

2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره        

2-4 خواص نانو لوله های کربنی       

2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن        

2-4-1-1 مدول الاستیسیته   

2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک

2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها          

2-5 کاربردهای نانو فناوری 

2-5-1 کاربردهای نانولوله‌های کربنی 

2-5-1-1 کاربرد در ساختار مواد       

2-5-1-2 کاربردهای الکتریکی و مغناطیسی      

2-5-1-3 کاربردهای شیمیایی           

2-5-1-4 کاربردهای مکانیکی           

فصل سوم           

روش های سنتز نانو لوله های کربنی

3-1 فرایندهای تولید نانولوله های کربنی          

3-1-1 تخلیه از قوس الکتریکی         

3-1-2 تبخیر/ سایش لیزری 

3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)

3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )        

3-1-5 رشد فازبخار           

3-1-6 الکترولیز  

3-1-7 سنتز شعله 

3-1-8 خالص سازی نانولوله های کربنی          

-2 تجهیزات        

3-2-1 میکروسکوپ های الکترونی     

3-2-2 میکروسکوپ الکترونی عبوری (TEM)   

3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)   

3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)          

3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)

3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)   

فصل چهارم

شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته      

4-1 مقدمه          

4-2 مواد در مقیاس نانو      

4-2-1 مواد محاسباتی        

4-2-2 مواد نانوساختار       

4-3 مبانی تئوری تحلیل مواد در مقیاس نانو      

4-3-1 چارچوب های تئوری در تحلیل مواد      

4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد 

4-4 روش های شبیه سازی  

4-4-1 روش دینامیک مولکولی         

4-4-2 روش مونت کارلو    

4-4-3 روش محیط پیوسته   

4-4-4 مکانیک میکرو       

4-4-5 روش المان محدود (FEM)      

4-4-6 محیط پیوسته مؤثر   

4-5 روش های مدلسازی نانو لوله های کربنی    

4-5-1 مدلهای مولکولی      

4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)      

4-5-1-2 روش اب انیشو    

4-5-1-3 روش تایت باندینگ           

4-5-1-4 محدودیت های مدل های مولکولی      

4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها

4-5-2-1 مدل یاکوبسون     

4-5-2-2 مدل کوشی بورن  

4-5-2-3 مدل خرپایی        

4-5-2-4 مدلقاب فضایی     

4-6 محدوده کاربرد مدل محیط پیوسته 

4-6-1 کاربرد مدل پوسته پیوسته       

4-6-2 اثرات سازه نانولوله بر روی تغییر شکل  

4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله

4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله

4-6-5 محدودیتهای مدل پوسته پیوسته  99

4-6-5-1 محدودیت تعاریف در پوسته پیوسته    

4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته    

4-6-6 کاربرد مدل تیر پیوسته          

فصل پنجم           

مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی

5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای         

5-4-3-7 ماتریس سختی برای یک حلقه کربن   

5-1 مقدمه          

5-2 نیرو در دینامیک مولکولی         

5-2-1 نیروهای بین اتمی    

5-2-1-1 پتانسیلهای جفتی   

5-2-1-2 پتانسیلهای چندتایی

5-2-2 میدانهای خارجی نیرو

5-3 بررسی مدل های محیط پیوسته گذشته       

5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی 

5-4-1 مدل انرژی- معادل   

5-4-1-1 خصوصیاتمحوری نانولوله های کربنی تک دیواره          

5-4-1-2 خصوصیاتمحیطی نانولوله های کربنی تک دیواره           

5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS         

5-4-2-1 تکنیک عددی بر اساس المان محدود   

5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB

5-4-3-1 مقدمه    

5-4-3-2 ماتریس الاستیسیته

5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی

5-4-3-4 تعیین و نگاشت المان         

5-4-3-5 ماتریس کرنش-جابجائی      

5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه 

5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه

فصل ششم

نتایج

6-1 نتایج حاصل از مدل انرژی-معادل

6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره     

6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره     

6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS     

6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [

6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره    

6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB 

فصل هفتم           

نتیجه گیری و پیشنهادات

7-1 نتیجه گیری   

7-2 پیشنهادات     

 

فهرست جداول:

جدول 4-1: اتفاقات مهم در توسعه مواد در 350 سال گذشته

جدول 5-1: خصوصیات هندسی و الاستیک المان تیر

جدول5-2 : پارامترهای اندرکنش واندر والس

جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS .

جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل

جدول6-3 : داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS

جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS

جدول6-5 : مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده

جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی

جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ

جدول 6-8 : مقایسه مقادیر E، G و به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع

 

فهرست اشکال:

شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد

شکل 1-2 : اشکال متفاوت مواد با پایه کربن

شکل 1-3 : تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره را نشان می دهد شکل 1-4 : تصویر TEMازنانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEMnm 36/0 می باشد

شکل 1-5 : تصویر TEM گرفته شدهازنانوپیپاد

شکل 2-1 : تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991

شکل 2-2 : انواع نانولوله:(الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12)(ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10)

شکل 2-3 : شبکه شش گوشه ای اتم های کربن

شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره

شکل 2-5 : شکل شماتیک یک نانولوله کربنی چند دیواره MWCNTs

شکل 2-6 : نانو پیپاد

شکل 2-7 : شکل شماتیک یک نانو لوله کهازحلقه ها شش ضلعی کربنی تشکیل شده است

شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه

شکل 2-9 : تصویر شماتیک شبکه کربن در سلول های شش ضلعی

شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطیازبردارهای پایه b , a

شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها

شکل 2-12: تصویر سطح مقطع یک نانو لوله

شکل 2-13: مراحلآزاد سازی نانو لوله کربن

شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششیالف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی

شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله

شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM.

شکل2-18 : نانودنده ها

شکل 3- 1: آزمایش تخلیه قوس

شکل 3-2 : دستگاه تبخیر/سایش لیزری

شکل 3-3 : شماتیک ابزار CVD

شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTsرا که به روش PECVD رشد یافتهنشان می دهد شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف) 40–50 nmو (ب). 200–300 nm

شکل 3-6 : نانولوله کربنی MWCNT به عنوان تیرک AFM

شکل 4-1 : تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی

شکل 4-2 : مدل سازی موقعیت ذرات در محیط پیوسته

شکل 4-3 : محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول

شکل 4-4 : تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی

شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش

شکل 4-6 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه

شکل 4-7 : موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله

شکل 4- 8 : المان حجم معرف در نانو لوله کربنی

شکل 4- 9 : مدلسازی محیط پیوسته معادل

شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته

شکل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف

شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی

شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی

شکل4-14: شکل شماتیک یک صفحه شبکه ای کربن شامل اتم های کربن در چیدمان های شش گوشه ای.

شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی

شکل 4-16: وابستگی کرنش بحرانی نانولوله به شعاع با ضخامت های تخمینی متفاوت

شکل 5-1: نمایش نیرو وپتانسیل لنارد-جونز برحسب فاصله بین اتمی r

شکل 5-2 : نمایش نیرو وپتانسیل مورس برحسب فاصله بین اتمی r

شکل 5-3 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه

شکل5-4 : فعل و انفعالات بین اتمی در مکانیک مولکولی

شکل5-5 : شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ

شکل5-6 : شکل شماتیک یک نانولوله صندلی راحتی (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b

شکل5-7 : شکل شماتیک یک نانولوله زیگزاگ (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b شکل5– 8 :تصویر شماتیک توزیع نیروها برای یک نانولوله کربنی تک دیواره

شکل 5-9 : تصویر شماتیک توزیع نیرو در یک نانولوله کربنی زیگزاگ

شکل5- 10: تصویر شماتیک (الف) نانولوله کربنی Armchair، (ب) مدل تحلیلی برای تراکم در جهت محیطی (ج) روابط هندسی

شکل 5-11: تصویر شماتیک (الف) نانولوله کربنیZigzag(ب)مدل تحلیلی برای فشار در جهت محیطی...129

شکل 5-12: تعادل مکانیک مولکولی و مکانیک ساختاری برای تعاملات کووالانس و غیر کووالانس بین اتم های کربن (الف) مدل مکانیک مولکولی (ب) مدل مکانیک ساختاری

شکل 5-13: منحنی پتانسیل لنارد-جونز و نیروی واندروالس نسبت به فاصله اتمی

شکل5-14 : رابطه نیرو (بین پیوند کربن-کربن) و کرنش بر اساس پتانسیل بهبود یافته مورس

شکل 5-15 :استفاده از المان میله خرپاییبرای شبیه سازی نیروهای واندروالس

شکل5-16 : منحنی نیرو-جابجائی غیر خطی میله خرپایی

شکل 5-17: تغییرات سختی فنر نسبت به جابجائی بین اتمی

شکل 5-18: مدل های المان محدود ایجاد شده برای اشکال مختلف نانولوله (الف) :صندلی راحتی (7،7) (ب):زیگزاگ(7،0) (ج): نانولوله دودیواره (5،5) و (10،10)

شکل5-19 : المان های نماینده برای مدل های شیمیایی ، خرپایی و محیط پیوسته

شکل 5-20 : شبیه سازینانولوله های کربنی تک دیواره به عنوان ساختار قاب فضایی

شکل5-21 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی تک دیواره: (الف) زیگزاگ (7،0) ، (ب) صندلی راحتی (7،7) ، (ج) زیگزاگ (0،10) ، (د) صندلی راحتی (7،7)

شکل5-22 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی چند دیواره: (الف) مجموعه 4 دیواره نانولوله زیگزاگ (5،0) (14،0) (23،0) (32،0) تحت کشش خالص ، (ب) مجموعه 4 دیواره نانولوله صندلی راحتی (5،5) (10،10) (15،15) (20،20) تحت پیچش خالص

شکل5-23 : نانولوله تحت کشش

شکل5-24 : یک نانولوله کربنی تک دیواره شبیه سازی شده به عنوان ساختار قاب فضایی

شکل5-25 : شکل شماتیک اتمهای کربن و پیوند های کربن متصل کننده آنها در ورق گرافیت

شکل 5-26 : نمودار Eωa بر حسب فاصله بین اتمی ρa

شکل 5-27 : شکل شماتیک شش گوشه ای کربن و اتم های کربن و پیوندهای کواالانس و واندروالس

شکل5-28 : شکل شماتیک شش گوشه ای کربن که تنها پیوندهای کووالانس را نشان می دهد

شکل5-29 : سه حالت بارگذاری برای معادل سازی انرژی کرنشی مدل ها

شکل5-30 : شکل شماتیک از شش گوشه ای کربن و نیرو های غیر پیوندی

شکل5-31 : شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن

شکل5-32: یک مدل جزئی از ساختار شبکه ای رول نشده که نانولوله کربنی را شکل می دهد. شش ضلعی های متساوی الاضلاع نماینده حلقه های شش ضلعی پیوند های کووالانس کربن می باشد، که هر رأس آن محل قرار گیری اتم کربن می باشد

شکل5-33 : شکل یک حلقه کربن به صورت یک شش ضلعی متساوی الاضلاع و هر اتم کربن به عنوان گره با نامگذاری قراردادی

شکل 5-34 : شکل یک ذوزنقه

دانلود با لینک مستقیم


پروژه مدل سازی و آنالیز خواص مکانیکی نانولوله های کربنی. doc

پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

اختصاصی از رزفایل پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc دانلود با لینک مستقیم و پر سرعت .

پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc


پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 85 صفحه

 

چکیده:

پس از کشف نانولوله های کربنی توسط ایجیما و همکارانش بررسی های بسیار زیادی بر روی این ساختارها در سایر علوم انجام شده است. این ساختارها به دلیل خواص منحصر به فرد مکانیکی و الکتریکی که از خود نشان داده اند جایگزین مناسبی برای سیلیکون و ترکیبات آن در قطعات الکترونیکی خواهند شد. در اینجا به بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ که به عنوان یک کانال بین چشمه و دررو قرار داده شده پرداختیم و نحوه ی توزیع جریان در ترانزیستور های اثر میدانی را در شرایط دمایی و میدان های مختلف بررسی کرده ایم. از آنجایی که سرعت خاموش و روشن شدن ترانزیستور برای ما در قطعات الکترونیکی و پردازنده های کامپوتری از اهمیت ویژه ای برخوردار است، انتخاب نانولوله ای که تحرک پذیری بالایی داشته باشد بسیار مهم است. نتایج بررسی ها نشان می دهد تحرک پذیری الکترون در نانولوله های کربنی متفاوت به ازای میدان های مختلفی که در طول نانولوله ها اعمال شود، مقدار بیشینه ای را خواهد گرفت. بنا بر این در طراحی ترانزیستورها با توجه به مشخصه های هندسی ترانزیستور و اختلاف پتانسیلی که بین چشمه و دررو آن اعمال می شود باید نانولوله ای را انتخاب کرد که تحرک پذیری مناسبی داشته باشد.

واژه های کلیدی

نانولوله ی کربنی، ترانزیستور اثر میدانی، مدل ثابت نیرو ، تحرک پذیری الکترون

 

مقدمه:

با گذر زمان و پیشرفت علم و تکنولوژی نیاز بشر به کسب اطلاعات و سرعت پردازش و ذخیره سازی آنها به صورت فزاینده ای بالا رفته است. گوردن مور معاون ارشد شرکت اینتل در سال 1965 نظریه ای ارائه داد مبنی بر اینکه در هر 18 ماه تعداد ترانزیستورهایی که در هر تراشه به کار می رود دو برابر شده و اندازه آن نیز نصف می شود [1]. این کوچک شدگی نگرانی هایی را به وجود آورده است. بر اساس این نظریه در سال 2010 باید ترانزیستورهایی وجود داشته باشد که ضخامت اکسید درگاه که یکی از اجزای اصلی ترانزیستور است به کمتر از یک نانومتر برسد. بنا بر این باید بررسی کرد، اکسید سیلیسیم به عنوان اکسید درگاه در ضخامت تنها کمتر از یک نانومتر انتظارات ما را در صنایع الکترونیک برآورده می کند یا نه. در راستای همین تحقیقات گروه دیگری از دانشمندان به بررسی نیترید سیلیکون به عنوان نامزد جدیدی برای اکسید درگاه پرداختند و نشان دادند که این ماده می تواند جایگزین مناسبی برای اکسید سیلیکون باشد [2]. جهت تولید ترانزیستورهای نسل امروز احتیاج به دانشی داریم که بتوانیم در ابعاد نانو تولیدات صنعتی از تراشه ها را داشته باشیم. بنا بر این توجه جوامع علمی و اقتصادی جهان بر این شاخه از علم که به فن آوری نانو معروف است، جلب شده است. در این بین نانولوله های کربنی به دلیل خواص منحصر به فرد الکتریکی و مکانیکی که از خود نشان داده اند توجه بسیاری از دانشمندان را به خود جلب کرده اند [3و4].

در راستای این تحقیقات ما به بررسی خواص الکتریکی نانولوله های کربنی پرداخته ایم. بسیاری از دانشمندان بر این باور هستند که نانولوله های کربنی به دلیل قابلیت رسانش ویژه یک بعدی جای مواد سیلیکونی در تراشه های نسل آینده را خواهند گرفت [5و6].

کربن با عدد اتمی 6 در گروه ششم جدول تناوبی قرار دارد. این عنصر ترکیب اصلی موجودات زنده را در بر گرفته است. بنا بر این بیشتر دانشمندان سعی می کنند ترکیبات کربنی را در شاخه ی شیمی آلی بررسی کنند. این عنصر از دیر باز برای انسان به صورت دوده و ذغال چوب شناخته شده بود. گونه-های متفاوت دیگری از کربن نیز وجود دارند که تفاوت این گونه ها صرفاً به شکل گیری اتم های کربن نسبت به هم یا به ساختار شبکه ای آن ها بر می گردد.

 

فهرست مطالب:

مقدمه

فصل اول

مقدمهای بر کربن و اشکال مختلف آن در طبیعت و کاربرهای آن

1-1 مقدمه

1-2 گونه های مختلف کربن در طبیعت

1-2-1 کربن بیشکل

1-2-2 الماس

1-2-3 گرافیت

1-2-4 فلورن و نانو لولههای کربنی

1-3 ترانزیستورهای اثر میدانی فلز- اکسید - نیمرسانا و ترانزیستور های اثرمیدانی نانولولهی کربنی

فصل 2

بررسی ساختار هندسی و الکتریکی گرافیت و نانولولههای کربنی

2-1 مقدمه

2-2 ساختار الکترونی کربن

2-2-1 اربیتال p2 کربن

2-2-2 روش وردشی

2-2-3 هیبریداسون اربیتالهای کربن

2-3 ساختار هندسی گرافیت و نانولولهی کربنی

2-3-1 ساختار هندسی گرافیت

2-3-2 ساختار هندسی نانولولههای کربنی

2-4 یاختهی واحد گرافیت و نانولولهی کربنی

2-4-1 یاختهی واحد صفحهی گرافیت

2-4-2 یاخته واحد نانولولهی کربنی

2-5 محاسبه ساختار نواری گرافیت و نانولولهی کربنی

2-5-1 مولکولهای محدود

2-5-2 ترازهای انرژی گرافیت

2-5-3 ترازهای انرژی نانولولهی کربنی

2-5-4 چگالی حالات در نانولولهی کربنی

2-6 نمودار پاشندگی فونونها در صفحهی گرافیت و نانولولههای کربنی

2-6-1 مدل ثابت نیرو و رابطهی پاشندگی فونونی برای صفحهی گرافیت

2-6-2 رابطهی پاشندگی فونونی برای نانولولههای کربنی

فصل 3

پراکندگی الکترون فونون

3-1 مقدمه

3-2 تابع توزیع الکترون

3-3 محاسبه نرخ پراکندگی کل

3-4 شبیه سازی پراکندگی الکترون – فونون

3-6 ضرورت تعریف روال واگرد

فصل 4

بحث و نتیجه گیری

4-1 مقدمه

4-2 نرخ پراکندگی

4-3 تابع توزیع در شرایط مختلف فیزیکی

4-4 بررسی سرعت میانگین الکترونها، جریان، مقاومت و تحرک پذیری الکترون

4-4-1 بررسی توزیع سرعت در نانولولههای زیگزاگ نیمرسانا

4-4-2 بررسی جریان الکتریکی در نانولولههای زیگزاگ نیمرسانا

4-4-3 بررسی مقاومت نانولولههای زیگزاگ نیمرسانا

4-4-3 بررسی تحرک پذیری الکترون در نانولولههای زیگزاگ نیمرسانا

نتیجه گیری

پیشنهادات

ضمیمهی (الف) توضیح روال واگرد.

منابع

چکیده انگلیسی

 

فهرست شکل ها :

 شکل1-1. گونه های مختلف کربن

شکل 1-2. ترانزیستور اثر میدانی

شکل 1-3. ترانزیستور نانولوله ی کربنی

شکل 2-1. اربیتال

شکل 2-2. هیبرید

شکل 2-3. ساختار

شکل 2-4. شبکه گرافیت

شکل 2-5. یاخته ی واحد گرافیت

شکل2-6. یاخته ی واحدنانولوله ی کربنی

شکل 2-7. گونه های متفاوت نانولوله های کربنی

شکل 2- 8. تبهگنی خطوط مجاز در نانولوله ی کربنی

شکل 2-9. مؤلفه های ماتریس ثابت نیرو

 

فهرست جدول ها:

جدول 2-1 عناصر ماتریس ثابت نیرو

 

فهرست نمودارها:

نمودار 2-1. نوار انرژی الکترونی گرافیت

نمودار 2-2. نوار انرژی الکترونی نانولوله ی کربنی

نمودار 2-3. چگالی حالات در نانولوله ی کربنی

نمودار 2-4. نوار سه بعدی انرژی فونونی گرافیت

نمودار 2-5. نوار انرژی فونونی در راستای خطوط متقارن منطقه اول بریلوئن

نمودار 2-6. نوار انرژی فونونی نانولوله ی کربنی

نمودار 3-1. سطح فرمی در نانولوه های کربنی

نمودار 3-2. منطقه ی تکرار شونده در نانولوله های کربنی

نمودار 3-3. نقاط متقارن در مسئله پراکندگی

نمودار 4-1. نرخ پراکندگی در دو نانولوله ی زیگزاگ  و

نمودار 4-2. وابستگی دمایی نرخ پراکندگی

نمودار4-3. تابع توزیع در میدان ضعیف و قوی  نانولوله ی

نمودار4-4. تابع توزیع در میدان ضعیف و قوی  نانولوله ی

نمودار 4-5. وابستگی سرعت میانگین الکترون به دما در نانولوله ی کربنی

نمودار 4-6. توزیع سرعت در نانولوله های زیگزاگ

نمودار 4-7. نمودار جریان – ولتاژ در مورد نانولوله های زیگزاگ

نمودار 4-8. مقاومت نانولوله های مختلف

 

فهرست پیوست ها:

پیوست الف: توضیح روال واگرد

چکیده انگلیسی

 

منابع و مأخذ:

[1] G. Moore, Electronics, 38, (1965), 114.

[2] A. Bahari, P. Morgen, Surface Science, 602, (2008), 2315.

[3] Y.X. Liang, T.H. Wang, Physica E, 23, (2004), 232.

[4] Christian Klinke, Ali Afzali, Chemical Physics Letters, 430, (2006), 75.

[5] Jing Guo, Mark Lundstrom, and Supriyo Datta, Applied Physics Letters, 80, (2002),3192.

[6] Ph. Avouris, R. Martel, V. Derycke, J. Appenzeller, Physica B, 323, (2002), 6.

[7] H. Raffi-Tabar, Physics Reports, 390, (2004), 235.

[8] Jianwei Che, Tahir¸ Cagin and William A Goddard, Nanotechnology, 10, (1999), 263.

[9] Qingzhong Zhao, Marco Buongiorno Nardelli and J.Bernholc, Physical Review B

, 65, (2002) 144105.

[10] Paul L. McEuen, Michael S. Fuhrer and Hongkun Park, IEEE Transactions on Nanotechnology, 1, (2002), 78.

[11] S. Iijima and T. Ichihashi, Nature, 363, (1993), 603.

[12] K.B.K. Teo., IEE Proc.-Circuits Devices Syst. 151, (2004), 443.

[13] Rodney S.Ruoff, DongQian, WingKam Liu, C.R.Physique, 4, (2003), 993.

[14] Cheung, C. L., Kurtz, A., Park, H. and Lieber, CMJ Phys. Chem B, 106, (2002), 2429.

[15] Y. Kobayashi, H. Nakashima, D. Takagi and Y. Homma, Thin Solid Films, 464, (2004), 286  

[16] Anazawa, Kazunori, Shimotani, Kei, Manabe, Chikara, Watanabe, Hiroyuki and Shimizu, Masaaki, Applied Physics Letters, 81, (2002), 739.

[17] Lee Seung Jong, Baik Hong Koo, Yoo Jae eun and Han Jong hoon, Diamond and Related Materials, 11, (2002), 914.

[18] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chemical Physics Letters, 243, (1995), 49.

[19] E. Yoo, L. Gao, T. Komatsu, N. Yagai, K. Arai, T. Yamazaki, K. Matsuishi, T.Matsumoto, and J. Nakamura, J. Phys. Chem. B, 108, (2004), 18903.

[20] Bae-HorngChen , Jeng-Hua Wei , Po-Yuan Lo , Hung-Hsiang Wang , Ming-Jinn Lai ,  Ming-JinnTsai, Tien Sheng Chao , Horng-Chih Lin and Tiao-Yuan Huang, Solid-State Electronics, 50, (2006), 1341.

[21] Ji-YongPark, Nanotechnology, 18, (2007), 095202.

[22] Madhu Menon, Physical Review Letters, 79, (1997), 4453.

[23] R.Satio, M. S. Dresselhaus, G. Dresselhaus, Physical Properties Of Carbon Nanotubes, Imperial College Press, ISBN 1-86094-093-5, (1998).

[24] Jens Peder Dahl, Introduction to the Quantum World of Atoms and Molecules, World Scientific Publishing Company, ISBN: 9810245653, (2001).

[25] Leonard L. Schiff, Quantum Mechanics 1st Edition, McGraw – Hill Book Company, ISBN: 0070552878, (1948).

[26] Charles Kittle, Introduction to solid state physics 7th edition, John Wiley and Sons, ISBN: 0-471-11181-3, (1996).

[27] Neil W. Ashcroft, N. David Mermin, Solid State Physics, Saunders College Publishing, ISBN: 0-03-083993-9, (1976).

[28] J. J. Sakurai, Modern Quantum Mechanics, Addision – Wesley Publishing, ISBN: 0-201-53929-2, (1994).

[29] R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chemical Physics Letters, 209, (1993), 77.

[30] YXiao ,XHYan ,JXCao and JWDing, J.Phys. Condense Matter, 15, (2003), 341.

[31] A. S. Davydov, Quantum Mechanics, Pergamon Pr, ISBN: 0080204376, (1976).

[32] G. Pennington and N. Goldsman, Physical Review B, 68, (2003), 45426.

[33] G. Pennington and N. Goldsman, IEICE Transactions on Electronics, 86, 372 (2003).

[34] S. Saito and A. Zettle, Carbon Nanotubes Quantum Cylinders of Graphene, Elsevier, ISBN: 978-0-444-53276-3, (2008).

[35] Xinjian Zhou, Carbon Nanotube Transistors, Sensors, and Beyond, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Cornell University, (2008).

[36] Ali Javey, Hydoungsub Kim, Markus Brink, Qian Wang, Ant Ural, Jing Guo, Paul Mcintyre, Paul Mceuen, Mark Lundstrom and Hongjie Dai, Nature materials, 1, (2002), 241.

 [37] J. M. Zeeman, Electrons and Phonons, The International Series Of Monographs On  Physics, ISBN:0-19-580779-8, (1960).

[38] JingGuo, MarkLundstrom, Applied Physics Letters, 86, (2005), 193103.

[39] Anisur Rahman, Jing Guo, Supriyo Datta and Mark S. Lundstrom, IEEE Transactions on Electron Devices, 50, (2003), 1853.

[40] D.V. Pozdnyakov, V.O. Galenchik, F.F. Komarov, V.M. Borzdov, Physica E, 33 (2006) 336.

 [41] R. Mickevicius, V. Mitin and U. K. Harithsa, J. Applied Physics, 75, (1994), 973.

 [42] Yung-Fu Chen and M. S. Fuhrer, Physical Review Letters, 95, (2005), 236803


دانلود با لینک مستقیم


پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

دانلود مقاله بررسی تأثیر درجه استحصال آرد بر ترکیب آرد، خواص رئولوژی خمیر و کیفیت نان

اختصاصی از رزفایل دانلود مقاله بررسی تأثیر درجه استحصال آرد بر ترکیب آرد، خواص رئولوژی خمیر و کیفیت نان دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله بررسی تأثیر درجه استحصال آرد بر ترکیب آرد، خواص رئولوژی خمیر و کیفیت نان


دانلود مقاله بررسی تأثیر درجه استحصال آرد بر ترکیب آرد، خواص رئولوژی خمیر و کیفیت نان

 

تعداد صفحات : 12 صفحه        -       

قالب بندی :  word             

 

 

 

  چکیده

اطلاعات موجود مبتنی بر دانش امروزی، قدمت نان را تا 6000 سال قبل تأیید نموده  و در بررسیهای باستان شناسی دلایل غیر قابل تردیدی در این زمینه بدست آمده است. نان یکی از ارزانترین و مهمترین مواد غذایی مورد استفاده انسان می باشد، گرچه با ارتقاء سطح زندگی در کشورهای پیشرفته از میزان مصرف نان کاسته شده است، لیکن نان هنوز هم بخش عمده ای از انرژی روزانه مردم کشورهای مختلف و بویژه اقشار کم درآمد جامعه را تأمین می کند (1).

ترکیب آرد و کیفیت نان همواره تحت تاثیر عوامل مختلف محیطی، توارثی و نوع فرآیندهای عمل آوری می باشند. از مهمترین فاکتورهای مؤثر بر ترکیب و ویژگیهای آرد و متعاقباً کیفیت نان حاصل، درجه استحصال آرد می باشد. در این مقاله ابتدا به تعریف واژه درجه استحصال آرد و روشهای محاسبه و تعیین آن پرداخته و سپس تأثیر درجه استحصال آرد بر ترکیب و ویژگیهای آرد (خاکستر، رنگ، رطوبت، پروتئین، فیبر خام، چربی، گلوتن مرطوب، عدد رسوبی، عدد فالینگ و اندازه ذرات آرد)، خواص رئولوژی خمیر وخواص کیفی نان مورد مطالعه و بررسی قرار گرفته است.

 

              

مقدمه

بر اساس تحقیقات و بررسیهای بعمل آمده، عمده ترین گروه غذایی در تأمین انرژی و پروتئین دریافتی در رژیم غذایی افراد کشور، نان می باشد (1). بویژه این امر در مورد اقشار کم درآمد جامعه که غذای اصلی آنها نان می باشد، حائز اهمیت است. با توجه به اینکه در کشور ما اکثریت مردم در سطح متوسط و کم درآمد جامعه قرار دارند، لذا هر گونه تحقیقی در رابطه با بهبود کیفیت نان در کشور ما کاربردی و مثمرثمر خواهد بود.

کیفیت نان تا حدود زیادی وابسته به ترکیب آرد بوده و عوامل متعددی در این رابطه تاثیر گذار می باشند. در رابطه با ویژگیهای آرد، یکی از فاکتورهایی که روی کیفیت نان می تواند تاثیر داشته باشد، درجه استحصال آرد می باشد. با توجه به اینکه اختلاف قابل ملاحظه ای در ترکیب آندوسپرم و پوسته دانه گندم وجود دارد، آردهایی که درجه استحصال مختلف دارند، از لحاظ ترکیب و میزان پروتئین یکسان نخواهند بود و امروزه ثابت شده که ترکیب آرد و بویژه مقدار و کیفیت پروتئین آن از فاکتورهای عمده در تعیین کیفیت نان می باشند.

از عمده ترین نانهای مسطح که در سطح وسیع در ایران پخت و به مصرف مردم می رسد،       می توان نانهای لواش، بربری، سنگک و تافتون را نام برد. در تهیه نان سنگک از آرد تقریبا کامل (با درجه استحصال 98%) استفاده می شود. درصد استحصال آرد مورد استفاده برای تهیه نانهای بربری، تافتون و لواش به ترتیب در حدود 81%، 5/86% و 5/86% می باشد که این ارقام صرفاً بر اساس معیارهای اقتصادی توسط واحدهای تولید کننده آرد در نظر گرفته شده است (1، 5 و 6).

 

درجه استحصال آرد[1]

هر چند که تعریف واژه درجه استحصال آرد در خود کلمه نهفته است، اما اگر در کاربرد این واژه دقت نشود ممکن است مفهوم آن مبهم باشد. دو نوع اشتباه عمده که در تعریف این واژه اغلب مشاهده می شود، انتخاب روش مورد استفاده جهت محاسبه آن و استفاده از واژه بازدهی آرد[2] بجای استحصال آرد می باشد (3).

نسبت گندم بازیابی شده به ‌شکل آرد توسط فرایند آسیاب کردن، درجه استحصال آرد نامیده می‌شود (3). در تعریف دیگر، تعداد قسمتهای وزنی آرد حاصل از آسیاب کردن یکصد کیلوگرم گندم ‌را در صد استحصال ‌آرد نامیده‌اند (2).

درجه استحصال آرد ممکن است بوسیله یکی از روابط پنجگانه ذیل محاسبه گردد (3).

الف) بر اساس گندم دریافت شده (گندم پاک نشده).

100 ×                 وزن آرد            = درصد استحصال

                                                                     وزن گندم پاک نشده         ب) بر اساس گندم خشک تمیز که برای عملیات نم زدن و متعادل کردن[3]  مورد استفاده قرار         می گیرد.

100 ×               وزن آرد                  = درصد استحصال

                                                                    وزن گندم خشک تمیز 

ج ) بر اساس گندم تمیز حالت داده شده که وارد اولین غلتک خرد کننده می شود.

                                      100 ×                   وزن آرد                     = درصد استحصال

                                                                 وزن گندم تمیز حالت داده شده

د ) بر اساس کل محصول بدست آمده از فرآیند آسیاب کردن گندم.

         100 ×                                       وزن آرد                                   = درصد استحصال

                          وزن آرد + وزن محصولات جانبی فرآیند آسیابانی (خوراک دام)

و ) بر اساس مجموع فرآیندهای آسیاب.

  100×                                           وزن آرد                                       = درصد استحصال

                   وزن آرد + وزن خوراک دام + وزن مواد باقیمانده روی الکهای آسیاب

از مهمترین روشها برای بیان کردن درصد استحصال می توان به روابط (الف) و (ج) اشاره نمود. رابطه (الف) یک ارزیابی از ارتباط هزینه مواد اولیه و آرد حاصل شده می باشد و رابطه (ج) کارایی فرایند آسیابانی را نشان می دهد.

بازدهی آرد بر خلاف مفهوم متداول واژه بازده، بیانگر مقدار آرد حاصل از یک مقدار معینی از گندم نیست، بلکه بصورت مقدار گندم مورد نیاز برای تولید مقدار معینی آرد (معمولا یکصد پوند) تعریف می شود (3).

 

تأثیر درجه استحصال بر ترکیب و ویژگیهای آرد

1-4- درصد استحصال و خاکستر آرد

با افزایش درصد استحصال آرد مقدار خاکستر آن نیز افزایش می یابد. زیرا مقدار املاح معدنی که ناشی از حضور لایه های بیرونی تر دانه گندم است، در آردهای با درصد استحصال بالا، زیادتر         می باشد (7).

2-4- درصد استحصال و رنگ آرد

با افزایش درصد استحصال، رنگ آرد افزایش پیدا می کند. با توجه به اینکه در آردهای با درصد استحصال بالا، حضور مواد غیر آندوسپرمی بیشتر می باشد، لذا حضور این اجزاء باعث تیره رنگ شدن آرد می شوند.

 


دانلود با لینک مستقیم


دانلود مقاله بررسی تأثیر درجه استحصال آرد بر ترکیب آرد، خواص رئولوژی خمیر و کیفیت نان

تحقیق بانک اطلاعات خواص دارویی وخصوصیات اقلیمی ونام علمی گیاهان دارویی word

اختصاصی از رزفایل تحقیق بانک اطلاعات خواص دارویی وخصوصیات اقلیمی ونام علمی گیاهان دارویی word دانلود با لینک مستقیم و پر سرعت .

تحقیق بانک اطلاعات خواص دارویی وخصوصیات اقلیمی ونام علمی گیاهان دارویی word


تحقیق بانک اطلاعات خواص دارویی وخصوصیات اقلیمی ونام علمی گیاهان دارویی word

کلیات گیاه شناسی

هویج گیاهی است دو ساله دارای ریشه راست و ساقه بی کرک که نوع پرورش یافته آن در اکثر نقاط زمین کشت می شود . قسمت مورد استفاده گیاه هویج ،‌ریشه ،‌میوه و تخم آن است .

ترکیبات شیمیایی:

هویج دارای 87% آب ، 1/5 مواد ازته ، 0/02 % چربی ، 8% مواد گلوسیدی ، حدود 1/5% سلولز و مقدری ماده رنگی کاروتن (ویتامین A ) و دیاستازهای مختلف و ویتامین های A,B,C,D,E می باشد .

خواص داروئی:

در هویج یک نوع آنسولین گیاهی وجود دارد که اثر کم کننده قند خون را درا می باشد بنابراین این عقیده قدیمی که هویج برای مبتلایان به بیمایر قند خوب نیست کاملا غلط است وبیماران قند می توانند به مقدر کم از این گیاه استفاده کنند . هویج با داشتن مواد مقوی و ویتامین ها یکی از مهمترین و مفیدترین برای بدن می باشد . خوردن هویج مقاومت بدن را در مقابل بیماریهای عفونی بالا می برد

مصرف هویج در برطرف کردن بیماریهای آب آوردن انساج بدن ، عدم دفع ادرار ،‌تحریک مجاری هضم و تنفسی ، سرفه های مقاوم ، آسم ،‌اخلاط خونی و دفع کرم اثر معجزه آسائی درد

از هویج می توان در مورد زیر استفاده کرد

1)برای برطرف کردن یبوست یک کیلو هویج را رنده کنید و در مقدری آب دو ساعت بجوشانید تا مانند ژله در آید صبح ناشتا چند قاشق بخورید

2)سوپ هویج برای کودکان شیر خوار که معده حساس دارند : ابتدا 200 گرم هویج رنده شده را در دیگ بریزید و روی آن یک لیتر آب اضافه کنید  و بجوشانید تا کاملا هویج ها لهش ود . سپس آنرا صاف کرده و به نسبت مساوی باشیر مخلوط کرده و در شیشه شیر بچه ریخته و به او بدهید .

3)تخم هویج را به مقدر یک قاشق غذا خوری در یک لیوان آب جوش ریخته و آنرا بمدت 5 دقیقه دم کنید . این دم کرده اثر نیروی دهنده، اشتها آور ف مدر ، زیاد کننده شیر خانم های شیر ده و اثر قاعده آور درد

4)برگ هویج را با آب بجوشانیدا ین جوشانده  را غرغره کنید برای آبسه مخاط دندان و دهان موثر است بعلاوه می توان برای رفع ترک و خراش پوست استفاده کرد

5)هنگامیکه کودک شروع به دندان درآوردن می کند یک قطعه هویج باریک را برای دندان زدن به او بدهید .

6)آب هویج را اگر روی صورت بکشید باعث روشن شدن و جلوه پوست صورت می شود .

7)اگر بخواهید لاغر شوید همه روزه با غذا هویج خام بخورید

8)اگر می خواهید چاق شوید بعنوان صبحانه باید آب هویج بخورید

9)هویج وییاز را با هم بجوشانید و به آن آب لیمو اضافه کنید داروی موثری برای درمان بیماریهای عصبی ،‌امراض کلیوی و همچنین جوان کننده پوست می باشد

10)خوردن هویج برای بیماریهای بواسیر موثر است

11)برای خارج کردن سنگ کیسه صفرا هویج اثر معجزه آسا درد

12)خوردن هویچ جوشهای صورت را درمان می کند

13)برای تقویت قوای جنسی و تحریک کبد و روده ها هویج داروی موثری است

14)در فرانسه بیمارستان معروفی وجود دارد که برای درمان بیماریهای کبدی فقط از سوپ هویج استفاده می کنند و دستور تهیه این سوپ بشرح زیر است

حدود 750گرم هویج را رنده کنید و آنرا در ظرفی که مقدری آب نمک درد بریزید سپس بان یک قاشق چایخوری جوش شیرین و یک قشلق سوپخوری کره اضافه کنید آنرا بجوش آورده و با آتش ملایم بپزید تا آب بخارشود و هر روز یک بشقاب از آن را میل کنید

15)هویج اعمال روده ها را منظم می کند و کمبود الیاف غذاهای گوشتی را جبران می کند بنابراین آنهایی که گوشت زیاد مصرف می کنند حتما باید هویج بخورند تا مشکل یبوست نداشته باشند .

16)برای برطرف کردن اسهال بچه ها بهترین دارو سوپ هویج است . برای این منظور باید 500 گرم هویج  را رنده کرده و آنرا در یک لیتر آب بجوشانید تا آنکه هویج کاملا پخته و نرم شود سپس آنرا در آسیاب برقی ریخته تا آنکه بصورت شربت در آید بعد بآن آّ اضافه کرده تا آنکه حجم آن یک لیتر شود .

برای بچه هایی که معده حساس دارند سوپ هویج بهترین دارو است بدین ترتیب که می توان یک یا دو بار در روز بجای شیر به بچه سوپ هویج داد حتی برای بچه هایی که کمتر از سه ماه دارند می توان بطور متناوب سوپ هویج به طفل داد یعنی یک وعده شیر و یک وعده سوپ هویج و بعد از سه ماهگی این  روش تبدیل به یک وعده سوپ و دو وعده شیر می شود .

17)آب هیج در  صبح ناشتا مواد سمی را از خون خارج می کند

18)اگر آسم یا گرفتگی صدا درید آب هویج بخورید

19)خانم هایی که پوست حساس دارند حتما باید پوست صورت و گردن خود را با آّب هویج پاک کنند

20)دم کرده تخم هویج و یا جویدن تخم هویج گاز معده را خارج کرده و فعالیت روده ها را زیاد می کند


دانلود با لینک مستقیم


تحقیق بانک اطلاعات خواص دارویی وخصوصیات اقلیمی ونام علمی گیاهان دارویی word

تحقیق درباره بررسی خواص و مزایای لوله PVC

اختصاصی از رزفایل تحقیق درباره بررسی خواص و مزایای لوله PVC دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره بررسی خواص و مزایای لوله PVC


تحقیق درباره بررسی خواص و مزایای لوله PVC

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه23

بخشی از فهرست مطالب

مقاومت شیمیایی بالا:

استحکام کششی بلند مدت

نسبت استحکام به وزن بالا، وزن سبک:

اتصالات آب بند:

استحکام ضربه:

خواص و مزایای لوله PVC

مقاومت در برابر خوردگی:

لوله های PCV نارسانای جریان الکتریکی هستند و در برابر واکنش های الکتروشیمیایی ناشی از اسیدها، بازها و نمک ها که منجر به خوردگی در فلزات می شوند، مقاوم هستند. این ویژگی در سطح داخلی و خارجی لوله ی PVC وجود دارد. در نتیجه، استفاده از لوله ی PVC در کاربردهایی که در آن خاک مهاجم وجود دارد، بسیار به صرفه است.

 


دانلود با لینک مستقیم


تحقیق درباره بررسی خواص و مزایای لوله PVC