رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه شبکه ها و تطابق در گراف

اختصاصی از رزفایل دانلود پایان نامه شبکه ها و تطابق در گراف دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه شبکه ها و تطابق در گراف


دانلود پایان نامه شبکه ها و تطابق در گراف

شبکه های حمل و نقل، واسطه‌هایی برای فرستادن کالاها از مراکز تولید به فروشگاهها هستند. این شبکه ها را می‌توان به صورت یک گراف جهت دار با یک سری ساختارهای اضافی درنظر گرفت و آن ها را به صورت کارآیی مورد تحلیل و بررسی قرار داد. این گونه گراف های جهت دار، نظریه ای را به وجود آورده اند که موضوع مورد بحث ما در این فصل می باشد. این نظریه ابعاد وسیعی از کاربردها را دربرمی‌گیرد.

تعریف 1-1 فرض کنیم N=(V,E) یک گراف سودار همبند بیطوقه باشد. N را یک شبکه یا یک شبکه حمل و نقل می‌نامند هرگاه شرایط زیر برقرار باشند:

(الف) رأس یکتایی مانند وجود دارد به طوری که ، یعنی درجة ورودی a، برابر 0 است. این رأس a را مبدأ یا منبع می‌نامند.

(ب) رأس یکتایی مانند به نام مقصد یا چاهک، وجود دارد به طوری که od(z)، یعنی درجة خروجی z، برابر با 0 است.

(پ) گراف N وزندار است و از این رو، تابعی از E در N، یعنی مجموعة اعداد صحیح نامنفی، وجود دارد که به هر کمان یک ظرفیت، که با نشان داده می‌شود، نسبت می‌دهد.

برای نشان دادن یک شبکه، ابتدا گراف جهت زمینه آن (D) را رسم کرده و سپس ظرفیت هر کمان را به عنوان برچسب آن کمان قرار می‌دهیم.

 

شامل 70 صفحه فایل word


دانلود با لینک مستقیم


دانلود پایان نامه شبکه ها و تطابق در گراف

تحقیق شبکه ها و تطابق در گراف

اختصاصی از رزفایل تحقیق شبکه ها و تطابق در گراف دانلود با لینک مستقیم و پر سرعت .

تحقیق شبکه ها و تطابق در گراف


تحقیق شبکه ها و تطابق در گراف

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:48

فهرست مطالب:
عنوان    صفحه
مقدمه    
فصل 1    
شبکه ها    
1-1 شارش ها    
1-2 برش ها    
1-3 قضیه شارش ماکزیمم – برش مینیمم    
1-4 قضیه منجر    
    
فصل 2    
تطابق ها    
2-1 انطباق ها    
2-2 تطابق ها و پوشش ها در گراف های دو بخش    
2-3 تطابق کامل    
2-4 مسأله تخصبص شغل    
    
منابع    

 

شبکه ها
1-1    شارش ها
شبکه های حمل و نقل، واسطه‌هایی برای فرستادن کالاها از مراکز تولید به فروشگاهها هستند. این شبکه ها را می‌توان به صورت یک گراف جهت دار با یک سری ساختارهای اضافی درنظر گرفت و آن ها را به صورت کارآیی مورد تحلیل و بررسی قرار داد. این گونه گراف های جهت دار، نظریه ای را به وجود آورده اند که موضوع مورد بحث ما در این فصل می باشد. این نظریه ابعاد وسیعی از کاربردها را دربرمی‌گیرد.
تعریف 1-1 فرض کنیم N=(V,E) یک گراف سودار همبند بیطوقه باشد. N را یک شبکه یا یک شبکه حمل و نقل می‌نامند هرگاه شرایط زیر برقرار باشند:
(الف) رأس یکتایی مانند   وجود دارد به طوری که  ، یعنی درجة ورودی a، برابر 0 است. این رأس a را مبدأ یا منبع می‌نامند.
(ب) رأس یکتایی مانند   به نام مقصد یا چاهک، وجود دارد به طوری که od(z)، یعنی درجة خروجی z، برابر با 0 است.
(پ) گراف N وزندار است و از این رو، تابعی از E در N، یعنی مجموعة اعداد صحیح نامنفی، وجود دارد که به هر کمان   یک ظرفیت، که با   نشان داده می‌شود، نسبت می‌دهد.
برای نشان دادن یک شبکه، ابتدا گراف جهت زمینه آن (D) را رسم کرده و سپس ظرفیت هر کمان را به عنوان برچسب آن کمان قرار می‌دهیم.
مثال 1-1 گراف شکل 1-1 یک شبکه حمل و نقل است. در این جا رأس a مبدأ و راس z مقصد است و ظرفیتها، کنار هر کمان نشان داده شده‌اند. چون  ، مقدار کالای حمل شده از a به z نمی‌تواند از 12 بیشتر شود. با توجه به   بازهم این مقدار محدودتر می‌شود و نمی‌تواند از 11 تجاوز کند. برای تعیین مقدار ماکسیممی که می‌توان از a به z حمل کرد  باید ظرفیتهای همة کمانهای بشکه را درنظر بگیریم.

تعریف 1-2 فرض کنیم   یک شبکة حمل و نقل باشد تابع f از E در N، یعنی مجموعة اعداد صحیح نامنفی، را یک شارش برای N می نامند هرگاه
الف) به ازای هر کمان   و
ب) به ازای هر  ، غیر از مبدأ a یا مقصد  z ،   (اگر کمانی مانند (v,w) وجود نداشته باشد، قرار می دهیم  
مقدار تابع f برای کمان e، f(e) را می توان به نرخ انتقال داده در طول e، تحت شارش f تشبیه کرد. شرط اول این تعریف مشخص می‌کند که مقدار کالای حمل شده در طول هر کمان نمی تواند از ظرفیت آن کمان تجاوز کند، کران بالایی شرط الف را قید ظرفیت می‌نامند.
شرط دوم، شرط بقا نامیده می شود و ایجاب می کند که، مقدار کالایی که وارد رأس مانند v می شود با مقدار کالایی که از این رأس خارج می شود برابر باشد. این امر در مورد همة رأسها به استثنای مبدأ و مقصد بر قرار  است.
مثال 1-2 در شبکه های شکل 1-2، نشان x,y روی کمانی مانند e به این ترتیب تعیین شده است که y , x=c(e) مقداری است که شارشی مانند f به این کمان نسبت داده است. نشان هر کمان مانند e در   صدق می کند. در شکل 1-2 (الف)، شارش، وارد رأس   می شود،5 است، ولی شارشی که از آن رأس خارج می شود 4=2+2 است. بنابراین، در این حالت تابع f نمی تواند یک شارش باشد. تابع f برای شکل 1-2 (ب) در هر دو شرط صدق می کند و بنابراین، شارشی برای شبکهء مفروض است.
توجه داشته باشید که هر شبکه، حداقل دارای یک شارش است، زیرا تابع fای که در آن به ازای هر   داشته باشیم:   در هر دو شرط تعریف
1-2 صدق می کند. این تابع، شارش صفر نامیده می شود.
تعریف 1-3 فرض کنیم f شارشی برای شبکة حمل و نقل N=(V,E) باشد.


دانلود با لینک مستقیم


تحقیق شبکه ها و تطابق در گراف