رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره سریهای توانی

اختصاصی از رزفایل تحقیق درباره سریهای توانی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 131

 

سریهای توانی

یک سری به شکل * که در آن و.... اعدادی ثابت هستند، یک سری توانی از x می نامند . معمولاً برای راحتی سری *به صورت می نویسد در حالت کلی تر سری توانی به صورت است .

اگر به جای x مقدار ثابت r در نظر بگیریم سری توانی به یک سری عددی تبدیل می شود و همگرایی آن از روشهای همگرایی سری های عددی استفاده می شود .

نکته : هرگاه سری توانی به ازاء x=r که همگرا باشد ، آنگاه به ازاء هر x که به طور مطلق همگرا است هرگاه سری به ازاءx=s واگرا باشد آنگاه به ازاء هر x که نیز واگرا است .

تعریف بازه همگرایی: مجموعه نقاطی که به از‌ ‌آنها سری همگرا باشد ، همواره یک بازه است که به آن بازه ، بازه همگرایی می گویند.

نکته: سری توانی یکی از سه رفتار زیر را دارد :

الف ) سری فقط به ازاءx=0 همگرا است در این صورت بازه همگرایی I بازة [0,0] است

ب ) سری به ازاء هر x همگرا است د راین صورت است

ج) سری به ازاء مقادیر ناصفری از x همگرا و به ازاء سایر مقادیر واگراست

در این صورت،I یک بازه متناهی به شکل (-R,R],[-R,R),[-R,R],(-R,R)که R>0 است و این بسته به رفتار سری در نقاط x=-R ,x=R است که باید جداگانه بررسی شود . بازه همگرایی I ممکن است شامل یک یا هر دو نقطه انتهای نباشد به عبارت دیگر سری ممکن است به ازاءx=R یاx=-R همگرا باشد یا نباشد .

شعاع همگرایی :عدد R در نکته فوق شعاع همگرایی سری توانی نام دارد .

مثال : بازه همگرایی و شعاع همگرایی سری های توانی زیر را به دست آورید .

(‌الف

حل : از آزمون نسبت نتیجه می شود که سری فوق به ازاء x=0 همگرا است زیرا :

 

مگر آنکه x=0 لذا R=0,I=[0,0]

حل : آز آزمون ریشه نتیجه می شود که سری به ازاء هر x همگرا است زیرا :

 

حل : معلوم می شود که

*

لذا سری به ازاء به طور مطلق همگرا به ازاء واگرا می باشد در نتیجه شعاع همگرایی 1 می باشد بازة‌ همگرایی [-1,1) است در واقع به ازاء x=1 سری * به سری توافقی واگرای تبدیل می شود . ولی به ازاx=-1 به سری متناوب به طور مشروط همگرای بدل خواهد شد

حل : یک سری توانی است که فقط شامل توانهای زوج x است با استفاده از آزمون نسبت داریم :

 

لذا سری بطور مطلق همگرا است اگر یا معادلا و واگر است اگر یادر نتیجه شعاع همگرایی1می باشد. بازه همگرایی بازه بسته می باشد. در واقع با گذاردن x=-1 , x=1 در سری فوق یکسری بطور مشروط همگرا است .

حل : با استفاده از آزمون نسبت داریم :

 

لذا سری بطور مطلق همگرا است اگر و واگراست اگر در نتیجه شعاع همگرایی سری 5 می باشد . بازه همگرایی بازه بسته [-5,5] می باشد

(هـ

حل : با استفاده از آزمون ریشه داریم :

 

لذا سری برای هر x همگراست یعنی

حل : با استفاده از آزمون نسبت داریم :

 

 


دانلود با لینک مستقیم


تحقیق درباره سریهای توانی