رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تمرین انتگرال - ریاضی

اختصاصی از رزفایل دانلود تمرین انتگرال - ریاضی دانلود با لینک مستقیم و پر سرعت .

دانلود تمرین انتگرال - ریاضی


دانلود تمرین انتگرال - ریاضی

سری فوریه
14-1- خواص کلی
تمرینات
14-1-1 می خواهیم تابع  (به صورت عبارت درجه دوم انتگرال پذیر) را به کمک یک سری فوریه متناهی نمایش دهیم. معیار مناسبی برای دقت سری به کمک انتگرال مربع انحراف برقرار زیر به دست می آید.
 
نشان دهید که شرط کیمنه شدن   یعنی:
 
به ازای همه مقادیرn، به انتخاب an و bn به صورتی که در معادله های (14-11) و (14/12) داده شده است، می انجامد.
پاسخ
 
 
به همین ترتیب خواهیم داشت:
 
که برای رسیدن به روابط فوق از روابط تعامد (14-7) و (14-8) و (14-9) استفاده کرده ایم.
14-1-2 در بررسی یک شکل موج پیچیده (کشنده های اقیانوسی، زمین لرزه ها، نوارهای موسیقی و مانند آنها) بهتر است. از سری فوریه ای به صورت زیر بهره گیریم.
 
نشان دهید که این معادله با معادله (14-1) هم ارز است و در آن
 
پاسخ: قبلاً سری فوریه را به صورت زیر تعریف کرده بودیم.
 
سری فوریه جدیدی که در نظر گرفته بودیم به صورت زیر قابل بسط دادن است.
 
در صورتی که داشته باشیم:
 
روابط I و I I هم ارز هستند.
14-1-3 تابع  را به صورت یک سری فوریه نمایی بسط داده ایم.
 
اگر  حقیقی باشد،  ، چه قیدی روی ضرایب  وضع می شود.
پاسخ:
 
 
14-1-4 با فرض اینکه   و  متناهی اند، نشان دهید که
 
پاسخ:
 
وقتی   میل می کند cosmx و sinmx مقدار معینی ندارند در نتیجه برای اینکه حاصل انتگرال مقدار معینی داشته باشد باید داشته باشیم.
       
14-1-5 شگرد مجموعه یابی این بخش را به کار بندید و نشان دهید.
 
به شکل 14-2 مراجعه کنید.
پاسخ:
 
که به ازای  مطلقاً همگراست. دستور العمل ما به این ترتیب است که تلاش کنیم از طریق تبدیل توابع مثلثاتی به توابع نمایی، سری توانی تشکیل دهیم.
 
 
 
 
 
چنانچه   باشد خواهیم داشت.
 
 
14-1-6 مجموع سری مثلثاتی زیر را به دست آورید.
 
و نشان دهید که این مجموع برابر  است.
پاسخ:
 
 
 
 
 
 شامل 67 صفحه word به همراه جواب تمامی سوالات


دانلود با لینک مستقیم


دانلود تمرین انتگرال - ریاضی

تحقیق در مورد انتگرال

اختصاصی از رزفایل تحقیق در مورد انتگرال دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد انتگرال


تحقیق در مورد انتگرال

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه42

فهرست مطالب

 

 

 

تعریف های انتگرال

(
lebesgue)از مهم ترین تعاریف در انتگرال می توان از انتگرال ریمان و انتگرال لبسکیاست.
انتگرال ریمان بوسیله برنهارد ریمان در سال 1854 ارئه شد که تعریف دقیقی را از انتگرال ارائه می داد تعریف دیگر را هنری لبسکی ارائه داد که طبق این تعریف شرایط تعویض پذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه می کرد. پس به
riemann-stieltjes از دیگر تعاریف ارائه شده در زمینه انتگرال میتوان به انتگرال اشاره کرد.
طور خلاصه سه تعریف زیر از مهمترین تعاریف انتگرال میباشند:


*
انتگرال ریمان
*
انتگرال لبسکی
*
انتگرال
riemann-stieltjes

 

 

 

 

 

تاریخچه ی انتگرال

 

 

 

بیش از دو هزار سال پیش ارشمیدس (287-212 قبل از میلاد) فرمول هایی را برای محاسبه سطح  وجه ها ، ناحیه ها و حجم های جامد  مثل کره ، مخروط و سهمی یافت . روش انتگرال گیری ارشمیدس استثنایی و فوق العاده بود جبر ، نقش های بنیادی ، کلیات و حتی واحد اعشار را هم نمی دانست .

 

لیبنیز (1716-1646) و نیوتن (1727-1642) حسابان را کشف کردند . عقیده کلیدی آنها این بود که مشتق گیری و انتگرال گیری اثر یکدیگر را خنثی می کنند با استفاده از این ارتباط ها آنها توانستند تعدادی از مسائل مهم در ریاضی ، فیزیک و نجوم را حل کنند.

 

فوریر (1830-1768) در مورد رسانش گرما بوسیله سلسله زمان های مثلثاتی را می خواند تا نقش های بنیادی را نشان دهد .رشته های فوریر و جابجایی انتگرال امروزه در زمینه های مختلفی چون داروسازی و موزیک اجرا می شود .

 

گائوس (1855-1777) اولین جدول انتگرال را نوشت و همراه دیگران سعی در عملی کردن انتگرال در ریاضی و علوم فیزیک کرد . کایوچی (1857-1789) انتگرال را در یک دامنه همبستگی تعریف کرد . ریمان (1866-1826) و لیبیزگو (1941-1875) انتگرال معین را بر اساس یافته های مستدل و منطقی استوار کردند .

 

لیوویل (1882-1809) یک اسکلت محکم برای انتگرال گیری بوجود آورد بوسیله فهمیدن اینکه چه زمانی انتگرال نامعین از نقش های اساسی دوباره در مرحله جدید خود نقش اساسی مرحله بعد هستند . هرمیت (1901-1822) یک شیوه علمی برای انتگرال گیری به صورت عقلی و فکری ( یک روش علمی برای انتگرال گیری سریع ) در دهه 1940 بعد از میلاد استراسکی این روش را همراه لگاریتم توسعه بخشید .

 

در دهه بیستم میلادی قبل از بوجود آمدن کامپیوترها ریاضیدانان تئوری انتگرال گیری و عملی کردن آن روی جداول انتگرال را توسعه داده بودند و پیشرفت هایی حاصل شده بود .در میان این ریاضیدانان کسانی چون واتسون ، تیچمارش ، بارنر ، ملین ، میچر ، گرانبر ، هوفریتر ، اردلی ، لوئین ، لیوک ، مگنوس ، آپل بلت ، ابرتینگر ، گرادشتاین ، اکستون ، سریواستاوا ، پرودنیکف ، برایچیکف و ماریچیف حضور داشتند .

 

در سال 1969 رایسیچ پیشرفت بزرگی در زمینه روش علمی گرفتن انتگرال نامعین حاصل کرد . او کارش را بر پایه تئوری عمومی و تجربی انتگرال گیری با قوانین بنیادی منتشر کرد روش او عملاً در همه گروه های قضیه بنیادی کارگر نیست تا زمانی که در وجود آن یک معادله سخت مشتق گیری هست که نیاز دارد تا حل شود . تمام تلاش ها ااز آن پس بر روی حل این معادله با روش علمی برای موفقیت های مختلف قضیه اساسی گذاشته شد . ایت تلاش ها باعث پیشرفت کامل سیر و روش علمی رایسیچ شد . در دهه 1980 پیشرفت هایی نیز برای توسعه روش او در موارد خاص از قضیه های مخصوص و اصلی او شد .

 


دانلود با لینک مستقیم


تحقیق در مورد انتگرال

روش های انتگرال گیری

اختصاصی از رزفایل روش های انتگرال گیری دانلود با لینک مستقیم و پر سرعت .

روش های انتگرال گیری


روش های انتگرال گیری

اگر دانشجویی هستید که با انتگرال و انتگرال گیری مشکل دارید این جزوه بسیار مناسب شما هست بدون هیچ مشکلی از این پس انتگرال خواهید گرفت.

مبلغ این جزوه یک هزارم مبلغ کلاس های تقویتی و خصوصی است

بدون شک سود اصلی را شما میکنید.

قیمت یک جلسه کلاس خصوصی 60000 هزار تومان می باشد و قیمت این معلم مکتوب بسیار ارزان تر است.

به صورت pdf 

در ۳۰ صفحه کامل


دانلود با لینک مستقیم


روش های انتگرال گیری

مقاله تابع متغیر مختلط

اختصاصی از رزفایل مقاله تابع متغیر مختلط دانلود با لینک مستقیم و پر سرعت .

مقاله تابع متغیر مختلط


مقاله تابع متغیر مختلط

فایل : word

قابل ویرایش و آماده چاپ

تعداد صفحه :58

فهرست مطالب

 

 

فصل 6. 5

ویژگیهای تحلیلی نگاشت.. 5

۶.۱       جبر مختلط.. 7

همیوغ مختلط.. 9

تابعهای متغییر مختلط.. 13

خلاصه. 16

۶-۲   شرایط کوشی _ریمان.. 17

توابع تحلیلی.. 22

خلاصه. 22

۶-۳     قضیه ی انتگرال کوشی.. 23

انتگرال های پربندی.. 23

اثبات قضیه ی انتگرال کوشی به کمک قضیه ی استوکس... 25

نواحی همبند چند گانه. 27

فرمول انتگرال کوشی.. 29

مشتقها 31

قضیه ی موره آ 32

خلاصه. 34

۶-۵   بسط لوران.. 34

بسط تایلور. 34

اصل انعکاس شوارتز. 36

ادامه ی تحلیلی.. 37

سری لورن.. 40

خلاصه. 43

۶-۶ نگاشت.. 44

انتقال. 45

چرخش... 45

انعکاس... 46

نقطه های شاخه و توابع چند مقدار. 48

خلاصه. 53

۶-۷           نگاشت همدیس... 53

خلاصه. 54

 

تابعهای متغیر مختلط 1

ویژگیهای تحلیلی نگاشت

عددهای موهومی پرواز شگفت انگیز روح خدایند.این اعداد هویت دو گانه ای بین بودن ونبودن دارند.

                                                                             گاترفید ویلهلم فون لایب نیتس۱۷۰۲میلادی

نظریه ی تابع ها از یک متغییر مختلط شامل برخی از قوی ترین و مفید ترین وپر کاربرد ترین ابزارهای تحلیل ریاضی است.برای انکه دست کم تا هدودی اهمییت متغیر های مختلف را نمایش دهیم چند مبهث از کاربرد های انها را به اختصار بر می شمریم .

۱.در مورد بسیاری از زوج تابع هایu v ,همuوهم vدر معادله ی لاپلاس در دو بعد واقعی صدق میکنند .

                                                                                              برای مثال یا vیاu را میتوان برای توصیف پتانسیل الکتروستاتیکی دو بعدی به کار برد . آن گاه میتوان از تابع دیگری برای توصیف میدان الکتریکی Eبهره گرفت که یک دسته از منحنی های عمود بر منحنی های مربوط به تابع اولیه را ارائه می کند یک موقعیت مشابه برای هیدرودینامیک از یک شاره ایده ال با حرکت غیر چرخشی نیز وجود دارد تابع uباید پتانسیل سرعت را توصیف کند در حالی که تابع vتابع جریان خواهد بود.

درمواردبسیاریکه تابع های u,vمجهولند می توانیم به یاری نگاشت یا تبدیل در صفحه ی مختلط دستگاه مختصات مناسب با مسئله ی مورد نظر بسازیم .

٢.اعداد مختلط(در بخش ۱-۶) از زوج های اعداد حقیقی ساخته می شوند بنابر این حوزه ی اعداد حقیقی به طور طبیعی در حوزه ی اعداد مختلط جا سازی میشوند. در اصطلاح های ریاضی حوزه ی اعداد مختلط تعمیمی از حوزه ی اعداد حقیقی است و بعداً در جهت هر چند جمله ای به ترتیب n (در حالت کلی )صفر مختلط کامل میشود . این واقعیت ابتدا به وسیله ی گاوس اثبات شد و قضیه اصلی جبر نامیده شد (بخش ۶-۴و۷-٢ را ببینید ) به صورت یک نتیجه تابع های حقیقی سری حقیقی بی نهایت و انتگرال ها معمولا میتوانند به طور طبیعی به اعداد مختلط ساده به وسیله ی نشاندن یک متغیر حقیقی x برای مثال به جای مختلط z تعمیم داده شوند .            


دانلود با لینک مستقیم


مقاله تابع متغیر مختلط