رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد فیبوناچی رشته ای از اعداد

اختصاصی از رزفایل تحقیق در مورد فیبوناچی رشته ای از اعداد دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد فیبوناچی رشته ای از اعداد


تحقیق در مورد فیبوناچی رشته ای از اعداد

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه13

فیبوناچی رشته ای از اعداد  
سری فیبوناچی رشته ای از اعداد است که توسط لئونارد فیبوناچی دا پیزا ریاضی دان قرن سیزدهم کشف شد (در اصل پس از یک دانشمند ایرانی دوباره کشف شد.) ما کمی از پیشینه تاریخی این مرد اعجاب انگیز نقل می کنیم و بعد از آن در مورد این سری که باعث شهرت او شد صحبت می کنیم. زمانی که اسم کوچک الیوت مشغول تدوین تئوری خود بود مبنای محاسبات خود را سری ریاضی فیبوناچی قرارداد و این سری پایه قواعد موج شد.
    
     در اوایل سال های 1200 لئونارد فیبوناچی از شهر پیزا کتاب معروف خود - کتاب محاسبات - را چاپ کرد که بزرگ ترین کشف تاریخ تا آن زمان را به اروپاییان نشان می داد. در این کتاب سیستم ده دهی برای اولین بار نامگذاری شد و عدد صفر به عنوان مبدا در این مقیاس به کار گرفته شد.
    
     قبل از این تاریخ عددگذاری و شمارش با سیستم یونانی و رومی انجام شد که جمع و تفریق کردن و ضرب و تقسیم آن کار ساده ای نبود. مخصوصاً زمانی که محاسبه گر با اعداد بزرگی سروکار داشت. در پی تلاش های فیبوناچی و همین طور ساده تر شدن محاسبات با این سیستم سرانجام سیستم رومی با سیستم محاسباتی هند و عربی جدید جایگزین شد. معرفی سیستم جدید به اروپا اولین دستاورد ریاضی از زمان سقوط رم باستان در 700 سال قبل بود.
    
     اگرچه بعدها تاریخ فیبوناچی را فراموش کرد اما این ادعای درستی است که بگوییم فیبوناچی بزرگ ترین ریاضی دان قرون وسطی بود.
    
    
    
    سری فیبوناچی
    
     در کتاب لیبرآباکی معمایی حل شده که جواب آن رشته اعدادی به این شرح است:
    
     1 و 1و 2 و 3و 5 و 8 و 13و 21 و 34 و 55 و 89 و 144و الی بی نهایت که امروزه به عنوان سری فیبوناچی شناخته می شود. معما به این شرح بوده است:
    
     در یک محیط بسته از یک جفت خرگوش چند جفت خرگوش می توان به دست آورد. اگر هر جفت در هر ماه یک جفت دیگر به دنیا بیاورد و هر جفت تولیدمثل را از ماه دوم زندگی خود آغاز کند؟
    
     برای حل معما باید متوجه باشیم که هرجفت خرگوش یک ماه طول می کشد تا به حد بلوغ برسد و دوران بارداری نیز یک ماه طول می کشد پس تعداد خرگوش ها در دو ماه اول ثابت می ماند (یک ماه برای به بلوغ رسیدن و یک ماه طول دوره بارداری) پس سری به صورت 1و 1 تا آخر ماه دوم می شود. این جفت طی ماه دوم باردار می شوند و در ابتدای ماه سوم یک جفت دیگر به دنیا می آورند. پس تعداد جفت ها در ماه سوم برابر با 2 است همین جفت در ماه آینده نیز جفت دیگری را به دنیا می آورند جفت دیگر نیز طی این ماه به بلوغ می رسد. پس تا انتهای ماه چهارم سری به صورت 1و1و2و3 می شود تا انتهای ماه پنجم از سه جفت حاضر دو جفت قبلی دوباره باردار می شوند و دو جفت جدید به دنیا می آورند پس تعداد جفت های خرگوش ها به 5 می رسد و سری به صورت 1 و 1و 2و3 و5 می شود. در ماه بعدی سه جفت از خرگوش ها فرزند به دنیا می آورند و سری به صورت 1و 1و 2و3 و5 و8 در می آید و به همین ترتیب پیش می رود


دانلود با لینک مستقیم


تحقیق در مورد فیبوناچی رشته ای از اعداد

آموزش شمارش اعداد انگلیسی برای کودکان

اختصاصی از رزفایل آموزش شمارش اعداد انگلیسی برای کودکان دانلود با لینک مستقیم و پر سرعت .

آموزش شمارش اعداد انگلیسی برای کودکان


آموزش شمارش و دیکته اعداد انگلیسی برای کودکان

 

 

 

 

 

 

این کلیپ آموزشی 8 دقیقه ای به شما کمک میکند تا طرز درست نوشتن اعداد (دیکته اعداد) و تلفظ شمارش 1 تا 20 انگلیسی را فرا بگیرید. همچنین همراه با آزمون با عکس های کاربردی می باشد.

 کیفیت این ویدیو آموزشی  720p می باشد. این آموزش برای کودکان بسیار مناسب می باشد توصیه می کنیم از این آموزش استفاده کنید.

لازم است یادآوری کنیم محتویات پوشه دانلودی در قالب یک ویدیو در زیر پست ارائه می شود تا شما عزیزان مطمئن شوید از کیفیت بعد نسبت به خرید آن اگر مایل بودید اقدام کنید. با تشکر از شما

محتویات پوشه دانلودی را در ویدیو زیر مشاهده کنید 

تضمین بازگشت وجه درصورت عدم کارکرد و یا عدم رضایت مشتری

اینجانب، پویا طاهری، مدیر فروشگاه اینترنتی آموزش مفید، به خریداران این محصول تضمین می دهم که درصورت اینکه از خرید این محصول راضی نبودید، پولِ شمارو تمام و کمال پس دهم، شما می توانید برای ارتباط با من از صفجه تماس با ما استفاده کنید و یا با شماره 093898641444 تماس حاصل فرمائید.

بهترین تبلیغات ما، رضایت شماست


دانلود با لینک مستقیم


آموزش شمارش اعداد انگلیسی برای کودکان

دانلود پاورپوینت ریاضی در معماری

اختصاصی از رزفایل دانلود پاورپوینت ریاضی در معماری دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریاضی در معماری


دانلود پاورپوینت ریاضی در معماری


 

 

 

 

 

 

 

محصول دانلودی: پاورپوینت ریاضی در معماری

تعداد اسلاید: 39

قابل ویرایش: می باشد

کیفیت محصول: ******

پاورپوینت ریاضی در معماری

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود. سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن بودند.

 


دانلود با لینک مستقیم


دانلود پاورپوینت ریاضی در معماری

سیستم اعداد مانده‌ای (باقیمانده)

اختصاصی از رزفایل سیستم اعداد مانده‌ای (باقیمانده) دانلود با لینک مستقیم و پر سرعت .

سیستم اعداد مانده‌ای (باقیمانده)


سیستم اعداد مانده‌ای (باقیمانده)

فرمت فایل : word(قابل ویرایش)تعداد صفحات26

 

عنوان صفحه
1-1) مقدمه 2
2-1) عملیات ریاضی 7
1-2-1) معکوس ضرب 10
3-1) سیستم اعدادمبنای در هم وابسطه 12
4-1) تبدیل اعداد به سیستم اعداد مانده‌ای و برعکس 22
1-4-1-) تبدیل اعداد از سیستم باینری به سیستم مانده‌ای 24
5-1) انتخاب پیمانه 26


سیستم اعداد مانده‌ای (باقیمانده)
سیستم اعداد مانده‌ای یک سیستم اعداد صحیح است، که مهمترین ویژگی‌اش بطور ذاتی انتقال رقم نقلی مجازی در جمع و ضرب و تفریق‌هاست، همچنین نتجه جمع و تفریق و ضرب اعداد ما در مرحله اول بدون در نظر گرفتن طول اعداد مشخص می‌شود، متأسفانه در سیستم اعداد مانده‌ای عملیات ریاضی دیگری مانند تقسیم و مقایسه و شناسایی علامت خیلی پیچیده و کند هستند از مشکلات دیگر سیستم اعداد مانده‌ای این است که چون با سیستم اعداد صحیح کار می‌کند در نتیجه نمایش اعداد اعشاری در سیستم اعداد مانده‌ای خیلی ناجور است با توجه به خواص سیستم اعداد مانده‌ای نتیجه می‌گیریم که در اهداف عمومی کامپیوترها (ماشین حساب‌ها) به صورت کاملاً جدی نمی‌تواند مطرح بشود. بهرحال ، برای بعضی از کاربرها که اهداف خاصی دارند مثل بسیاری از انواع فیلترهای دیجیتال، تعداد جمع و ضرب‌هایی که اساساً بزرگتر تعداد و درخواست بزرگی دامنه و شناسایی سرریز، تقسیم و شبیه این‌ها، سیستم اعداد باقیمانده خیلی جذاب و جالب می‌تواند باشد.
1-1) مقدمه
سیستم اعدادمانده‌ای اساساً بوسیله یک مبنای چندتائی (N - تائی) و نه یک مبنای واحد مثل از اعداد صحیح مشخص می‌شود. هر کدام از ها باقیمانده پس از تقسیم یک عدد بر آن‌ها است.عدد صیح X در سیستم اعداد مانده‌ای بوسیلة یک N -تائی مثل نمایش داده می‌شود که هر یک عدد غیرمنفی صحیح است که در رابطة زیر صادق است:



X
0
1
0
1
0
1
0
1
0
1
0
1
0 2
0
1
2
0
1
2
0
1
2
0
1
2 -4
-3
-2
-1
0
1
2
3
4
5
6
7
8
جدول 1-1 نمایش اعداد در سیستم اعداد مانده‌ای به پیمانة‌
بزرگترین عدد صحیحی است بطوریکه معروف است به باقیمانده X به پیمانة Mi ، و در روش نوشتن اعداد هر دو و با یک مفهوم استفاده می‌شوند.
مثال 1-1 سیستم اعدادمانده‌ای 2- باقیمانده‌ای با پیمانه‌های را ملاحظه کنید در این سیستم نمایش عدد صحیح x=5 به صورت نمایش داده می‌شود که و از رابطه‌های زیر بدست می‌آیند.
چونکه
چونکه
بنابراین در این سیستم اعداد مانده‌ای با پیمانه‌های و عدد صحیح 5 به صورت (2,1) نشان داده می‌شود.
عدد X لزوماً نباید یک عدد صحیح مثبت باشد بلکه می‌تواند عدد صیح منفی هم باشد برای مثال اگر X=-2 باشد آنگاه
چونکه
چونکه
نکته‌ای که در اینجا وجود دارد این است که ها مثبت تعریف می شوند .
بنابراین عدد صیح -2 در سیستم اعداد مانده‌ای با پیمانه‌های و بصورت نمایش داده می‌شود.
جدول 1-1 اعداد صحیح در محدودة [-4,8] را در سیستم اعداد مانده‌ای به پیمانة نمایش داده است.
همانطور که از جدول 1-1 مشخص است نمایش مانده‌ای یک عدد صحیح منحصر بفرد است در حالی که بر عکس این مطلب درست نیست و نمایش صحیح دو یا چند عددمانده‌ای ممکن است یکسان باشد برای مثال نمایش صحیح (1،1) هم عد یک می‌شود و هم عدد هفت، پس در نتیجه ما باید دامنة اعدادی را که نمایش داده می شوند محدود کنیم، همنطور که از جدول 1-1 مشخص می‌شود نمایش مانده‌ای دوره‌ای است و تکرار می‌شود و در اینجا محدودة تکرارش شش است، ما در سیستم اعداد مانده‌ای به پیمانة فقط شش نمایش مختلف دادیم چونکه دو مقدار مختلف سه مدقار مختلف می‌توانند به خود بگیرند، بنابراین ما باید ناحیة نمایش را به شش عدد محدود بکنیم، دو ناحیة‌ممکن در جدول مشخص شده‌اند، اولی و دومی است.
در حالت کلی در سیستم اعدادمانده‌ای می‌توان گفت که تعداد نمایش‌های غیرتکراری برابر است با کوچکترین مضرب مشترک پیمانه‌‌ها، که به صورت زیر نمایش داده می‌شود.

و از همین عنصر برای محدود کردن ناحیة نمایش استفاده می‌کنیم.


دانلود با لینک مستقیم


سیستم اعداد مانده‌ای (باقیمانده)