رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله تحلیل دینامیکی با استفاده از بردارهای ریتز وابسته به بار

اختصاصی از رزفایل مقاله تحلیل دینامیکی با استفاده از بردارهای ریتز وابسته به بار دانلود با لینک مستقیم و پر سرعت .

مقاله تحلیل دینامیکی با استفاده از بردارهای ریتز وابسته به بار


مقاله تحلیل دینامیکی با استفاده از بردارهای ریتز وابسته به بار

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:48

مقدمه

توسعه و رشد سریع سرعت کامپیوترها و روشهای اجزای محدود در طی سی سال گذشته محدوده و پیچیدگی مسائل سازه ای قابل حل را افزایش داده است. روش اجزای محدود روش تحلیلی را فراهم کرده است که امکان تحلیل هندسه، شرایط مرزی و بارگذاری دلخواه را به وجود آورده است و قابل اعمال بر سازه‌های یک بعدی، دو بعدی و سه بعدی می‌باشد. در کاربرد این روش برای دینامیک سازه‌ها ویژگی غالب روش اجزای محدود آن است که سیستم پیوسته واقعی را که از نظر تئوری بینهایت درجة آزادی دارد، با یک سیستم تقریبی چند درجه آزادی جایگزین نماید. هنگامی که با سازه‌های مهندسی کار می‌کنیم غیر معمول نمی‌باشد که تعداد درجات آزادی که در آنالیز باقی می‌مانند بسیار بزرگ باشد. بنابراین تأکید بسیاری در دینامیک سازه برای توسعة روشهای کارآمدی صورت می‌گیرد که بتوان پاسخ سیستم‌های بزرگ را تحت انواع گوناگون بارگذاری بدست آورد.

هر چند اساس روشهای معمول جبر ماتریس تحت تاثیر درجات آزادی قرار نمی‌گیرند، تلاش محاسباتی و قیمت، به سرعت با افزایش تعداد درجات آزادی افزایش می‌یابند. بنابراین بسیار مهم است که قیمت محاسبات در حد معقول نگهداشته شوند تا امکان تحلیل مجدد سازه بوجود آید. هزینه پایین محاسبات کامپیوتری برای یک تحلیل امکان اتخاذ یک سری تصمیمات اساسی در انتخاب و تغییر مدل و بارگذاری را برای مطالعة حساسیت نتایج، بهبود طراحی اولیه و رهنمون شدن به سمت قابلیت اعتماد برآوردها فراهم می‌آورد. بنابراین، بهینه سازی در روشهای عددی و متدهای حل که باعث کاهش زمان انجام محاسبات برای مسائل بزرگ گردند بسیار مفید خواهند بود.

 

 

شکل 1-1- ایده آل سازی سازه با جرم گسترده

استفاده از بردارهای ویژه، برای کاهش اندازة سیستمهای سازه‌ای یا ارائه رفتار سازه به وسیلة تعداد کمی از مختصات های عمومی (تعمیم یافته) – در فرمول بندی سنتی – احتیاج به حل بسیار گرانقیمت مقدار ویژه دارد.

یک روش جدید از تحلیل دینامیکی که نیاز به برآورد دقیق فرکانس ارتعاش آزاد و اشکال مدی ندارد توسط ویلسون Wilson یوان (Yuan) و دیکنز (Dickens) (1.17) ارائه شده است.

روش کاهش، بردارهای ریتز وابسته به بار WYD Ritz vectors) که D, Y, W (حروف اختصاری نویسندگان)( بر مبنای بر هم نهی مستقیم بردارهای ریتز حاصل از توزیع مکانی و  بارهای مشخص دینامیکی می‌باشد. این بردارها در کسری از زمان لازم برای محاسبة اشکال دقیق مدی، توسط یک الگوریتم بازگشتی ساده بدست می‌آیند. ارزیابی‌های اولیه و کاربرد الگوریتم در تحلیل تاریخچه زمانی زلزله نشان داده است که استفاده از بردارهای ریتز وابسته به بار منجر به نتایج قابل مقایسه یا حتی بهتری نسبت به حل دقیق مقدار ویژه شده است.

در اینجا هدف ما تحقیق در جنبه‌های عملی کاربرد کامپیوتری بردارهای ریتز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری می‌باشد. به علاوه، استراتژی‌های توسعه برای تحلیل دینامیکی سیستمهای غیر خطی ارائه خواهد شد. نیز راهنمایی‌هایی برای توسعه الگوریتمهایی برای ایجاد بردارهای ریتز تهیه شده است.

1-1- اصول اولیه تحلیل دینامیکی

تمام سازه های واقعی هنگام بارگذاری یا اعمال تغییرمکان به صورت دینامیکی رفتار می کنند. نیروهای اینرسی اضافی، با استفاده از قانون دوم نیوتن، برابر نیرو در شتاب می‌باشند. اگر نیروها و یا تغییر مکانها بسیار آرام اعمال شوند نیروهای اینرسی قابل صرفنظر کردن می باشند و یک تحلیل استاتیکی قابل انجام است. بنابراین می توان گفت، تحلیل دینامیکی بسط ساده ای از تحلیل استاتیکی می‌باشد.

بعلاوه تمام سازه های حقیقی بالقوه دارای درجات آزادی نامحدودی می باشند. بنابراین بحرانی ترین قسمت در تحلیل سازه ایجاد مدلی با تعداد درجات آزادی محدود می باشد که دارای تعدادی اعضای تقریباً بدون جرم و تعدادی گره باشد، که بتواند رفتار سازه را به طور مناسبی تخمین بزند. جرم سازه را می توان درگره ها متمرکز نمود. نیز برای یک سیستم الاستیک خطی خصوصیات سختی اعضاء را می توان باصحت بسیار خوبی تخمین زد- باتوجه به داده های تجربی- هرچند تخمین بارگذاری  دینامیکی، اتلاف انرژی و شرایط مرزی می تواند بسیار مشکل باشد.

با در نظر گیری موارد گفته شده برای کاهش خطاهای موجود لازم است تحلیل های دینامیکی متعدد با استفاده از مدلهای مختلف دینامیکی، بارگذاری و شرایط مرزی به کار گرفته شود و انجام حتی 20 آنالیز کامپیوتری برای طراحی یک سازه جدید و یا برآورد یک سازه موجود ممکن است لازم شود.

 با توجه به تعداد زیادی آنالیزهای کامپیوتری که برای یک تحلیل دینامیکی نمونه لازم است  باید در کامپیوترها روشهای عددی مناسبی برای محاسبات به کار رود.

2-1- تعادل دینامیکی

تعادل نیرویی برای یک سیستم چند درجه آزادی با جرم متمرکز شده، به صورت تابع زمان را می توان این گونه نوشت:

F(t)I + F(t)D + F(t)S = F(t)                                                                                  (1-2-1)

F(t)I : بردار نیروهای اینرسی عمل کننده بروی جرم

F(t)D : بردار نیروی میرایی لزج، یا اتلاف انرژی می باشد.

F(t)S : بردار نیروهای داخلی تحمل شده توسط سازه

F(t) : بردار بارهای اعمالی

معادله (1.2.1) برمبنای قوانین فیزیکی قرار دارد و برای هر دو دسته سیستمهای خطی و غیرخطی معتبر می باشد.

برای بسیاری از سیستمهای سازه ای تخمین رفتار خطی برای سازه انجام می گردد تا معادله فیزیکی
(1.2.1) تبدیل به گروهی از معادلات دیفرانسیل مرتبه دوم خطی گردد.

                                          (2-2-1)

که M ماتریس جرم، C ماتریس میرایی، K ماتریس سختی می باشند. بردارهای وابسته به زمان, ,, مقادیر مطلق تغییر مکان، سرعت و شتاب می باشند.

برای بارگذاری زلزله F(t) نیروی خارجی برابر صفر می باشد. حرکت اساسی لرزه‌ای سه مؤلفه u(t)ig می باشند که در نقطه ای زیر پی ساختمان در نظر گرفته می شوند. بنابراین می توانیم معادله (1.2.2) را با توجه به, ,,که کمیاتی نسبی (نسبت به مؤلفه‌های زلزله) می باشند بنویسیم.

بنابراین مقادیر مطلق تغییر مکان، سرعت و شتاب را می توان از معادله‌ (1.2.2) حذف نمود.

u(t)a = u(t) + {rx} u(t)xg + {ry} u(t)yg + {rz} u(t)zg

(t)a = (t) + {rx}  (t)xg + {ry} (t)yg + {rz} (t)zg                                       (3-2-1)

ü(t)a= ü(t) + {rx} ü(t)xg + {ry} ü(t)yg + {rz} ü(t)zg

که {ri} برداری است که در درجات آزادی جهتی 1 می باشد و بقیه عناصر آن صفرند.

با قرار دادن این معادله (3-2-1) در (2-2-1) داریم:

(t) + C(t) + Ku(t) = -Mx ü(t)xg - My ü(t)yg – Mz ü(t)zg                              (4-2-1)

که

Mi = M{ri}

روشهای کلاسیک گوناگونی برای حل معادله (1-4) وجود دارد که هرکدام دارای محاسن و معایب خاص خود می باشند که آنها را به صورت خلاصه بیان می کنیم.

3-1- روش حل گام به گام

عمومی ترین روش تحلیل دینامیکی روش افزایشی است که معادلات تعادل در زمانهای Dt, 2Dt, 3Dt , …  حل می شوند. که تعداد زیادی از اینگونه روشهای افزاینده برای حل وجود دارد. در حالت عمومی این روشها شامل حل گروه کاملی از معادلات تعادل در هر افزایش زمان می باشند. در صورت انجام تحلیلی غیرخطی ممکن است لازم باشد تا ماتریس سختی سازه را شکل دهی مجدد نماییم.

نیز امکان دارد در هر گام زمانی برای رسیدن به تعادل نیاز به تکرار داشته باشیم. از دیدگاه محاسباتی ممکن است حل یک سیستم با چند صد درجة آزادی زمان بسیاری طلب نماید.

بعلاوه ممکن است نیاز داشته باشیم تا میرایی عددی یا مجازی را به دستة زیادی از این راه حلهای افزایشی برای بدست آوردن راه حلی پایدار اضافه کنیم. برای تعدادی از سازه های غیرخطی که تحت تأثیر حرکت زمین قرار گرفته اند، روشهای حل عددی افزایشی لازم می باشد.

برای سیستمهای سازه ای بسیار بزرگ ترکیبی از برهم نهی مودی و روشهای افزایشی می توانند بسیار مؤثر باشند. (برای سیستمهای با تعداد کمی المانهای غیرخطی).

4-1- روش برهم نهی مودی

معمول ترین و مؤثرترین رهیافت برای آنالیز لرزه ای سازه های خطی روش برهم‌نهی‌مودی می باشد. پس از آنکه گروهی از بردارهای متعامد برآورد شدند این روش دستة بزرگ معادلات تعادل را به تعداد نسبتاً کمتری از معادلات دیفرانسیل مرتبه دوم تبدیل می کند که این باعث کاهش قابل توجهی در زمان محاسبات می‌شود.

نشان داده شده است که حرکات لرزه ای زمین تنها فرکانسهای پایین سازه را تحریک می نماید.به صورت معمول حرکات زلزله در فواصل زمانی 200 نقطه در ثانیه ثبت می گردند. بنا بر این داده های بارگذاری پایه شامل اطلاعات بالای 50 دور در ثانیه نمی باشند.با توجه به این مطلب صرف نظر از مودها و فرکانسهای بالاتر معمولاَ باعث ایجاد خطا نمی شوند.

5-1- تحلیل طیف پاسخ

روش تحلیل برهم نهی مودی اولیه ، که تنها به سازه های الاستیک خطی محدود می باشد، پاسخ کامل تاریخچة زمانی تغییر شکلهای گره ها و نیروهای اعضا را به علت حرکت زمین ویژه ای بدست می دهد. استفاده از این روش دو عیب دارد:

این روش حجم خروجی بالایی ایجاد می کند که این امر سبب زیاد شدن عملیات طراحی به خصوص هنگامی که بخواهیم نتایج را برای کنترل طراحی به کار بریم می‌گردد.

تحلیل باید برای چندین زلزله دیگر هم تکرار شود تا اطمینان حاصل گرد که تمام مدها تحریک شده اند.

مزایای محاسباتی قابل توجهی در استفاده از تحلیل طیف پاسخ برای پیش بینی تغییر مکانها و نیروهای اعضاء در سیستمهای سازه ای وجود دارد. این روش فقط شامل محاسبة حداکثر مقدار تغییر مکانها و نیروهای اعضاء با استفاده از طیفی هموار شده است که میانگین چندین زلزله است، می باشد. سپس لازم است برای بدست آوردن متحمل‌ترین مقدار اوج تغییر مکان یا نیرو از روشهای CQC ، SRSS و یا CQC3 استفاده  گردد.

6-1- حل در حوزة فرکانس

رهیافت پایة استفاده شده در حل معادلات تعادل دینامیکی در دامنه فرکانس بسط نیروهای خارجیF(t) در قالب عبارات سری های فوریه یا انتگرالهای فوریه می باشد.


دانلود با لینک مستقیم


مقاله تحلیل دینامیکی با استفاده از بردارهای ریتز وابسته به بار
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد