لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:9
فهرست و توضیحات:
مقدمه
بیان مسأله
اهمیت موضوع
یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.
در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می کردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط، یک خط و تنها یک خط می توان موازی با خط مفروض رسم کرد. برخی از ریاضیدانان مدعی بودند که این اصل را می توان به عنوان یک قضیه ثابت کرد. در این راه بسیاری از ریاضیدانان تلاش زیادی کردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات "اصل توازی" مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان کردند و هندسه های نااقلیدسی شکل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید
تحقیق درباره علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکم