رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

رزفایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد ریاضی (نامعادله، مثلثات و )

اختصاصی از رزفایل تحقیق درمورد ریاضی (نامعادله، مثلثات و ) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 27

 

نماد علمی:

نماد علمی مدلی جدید برای عدد نویسی است که از آن برای سهولت بخشیدن به امر نوشتن و خواندن اعداد بسیار بزرگ و یا بسیار کوچک مانند محاسبة جرم سیارات و یا یک اتم از عنصر، استفاده می کنند.

نماد علمی اعداد مثبت را به صورت می نویسند که در آن K عددی است اعشاری بین یک و ده و n نیز عددی صحیح است.

مثال: اعداد زیر را به صورت نماد علمی بنویسد.

(الف (ب

نامعادله:

اگر یک نامساوی شامل متغیر باشد به آن نامعادله گفته می شود.

روش حل نامعادله:

حل نامعادله از بسیاری جهات شبیه حل معادله می باشد، ولیکن با این تفاوت که در حل نامعادله برای مجهول محدوده ای به عنوان پاسخ (جواب) بدست می آید و در معادله یک مقدار مشخص و معینی برای مجهول حاصل می گردد.

:مثال

قوانین و نکات مهم در مورد نامساوی

1-به طرفین یک نامساوی می توان عددی را اضافه و یا کم نمود.

 

2-می توان طرفین یک نامساوی را در عددی مثبت ضرب یا بر آن تقسیم کرد.

 

3-اگر طرفین یک نامساوی را در یک عدد منفی ضرب (تقسیم) کنیم جهت نامساوی عوض می شود.

 

4-اگر طرفین یک نامساوی هم علامت باشند (مثبت یا منفی باشند) و طرفین را عکس کنیم. جهت نامساوی عوض می شود.

 

حل نامعادلات کسری:

برای حل نامعادلات کسری مانند معادلات گویا عمل می کنیم. یعنی دو طرف نامعادله را در کوچکترین مضرب مشترک مخرجها ضرب می نمائیم تا نامعادله از حالت کسری به خطی درآید.

 

نامعادلات توأم: این گونه نامعادلات یا بصورت دو نامعادله مجزا می شوند و یا اینکه ما باید آنها را به صورت دو نامعادله مجزا درآوریم. و روش حل آن بدین صورت است که هرکدام از نامعادلات را حل نموده و در نهایت بعد از بدست آوردن پاسخ آنها، اشتراک جوابهای آن دو را به عنوان جواب یا پاسخ اصلی بیان می کنیم.

مثال: نامعادلات توأم زیر را حل نمائید.

 

 

 

 

 


دانلود با لینک مستقیم


تحقیق درمورد ریاضی (نامعادله، مثلثات و )

فرمول های مثلثات

اختصاصی از رزفایل فرمول های مثلثات دانلود با لینک مستقیم و پر سرعت .

فرمول های مثلثات


فرمول های مثلثات

درس «مثلثات» را چه‌گونه مطالعه کنیم؟

به دلیل آن که مثلثات شیوه‌ی خاصی برای مطالعه دارد، آن را در قسمتی جدا از ریاضی آوردم تا به‌تر به آن توجه کنید. توجه داشته باشید که مثلثات درسی نیست که بتوانید آن را در ۲، ۳ روز و یا حتی یک هفته به‌طور کامل مطالعه کنید و به مشکل برنخورید. مثلثات را باید به‌‌طور پیوسته بخوانید. باید آرام‌آرام فرمول‌های مثلثات را بخوانید و از آن‌ها تست بزنید. مثلا یک روز فرمول‌های تبدیل ضرب به جمع را حفظ کنید و تست بزنید تا برای‌تان جا بیفتد. یک روز برای جمع به ضرب همین کار را تکرار کنید. یک روز دیگر فرمول‌های وارون توابع مثلثاتی را بخوانید و یک روز دیگر تعدادی از فرمول‌های مثلثات را حفظ کنید و تست بزنید. بعد از چند وقت، تست‌های کلی از مباحثی که خواندید بزنید به‌نحوی که ندانید از کدام فرمول حل می‌شود. بار اول زمان و درصد نگیرید اما بار دوم سعی کنید سرعت خود را بدون کاهش دقت، افزایش دهید. من حدود ۳ صفحه از خلاصه‌هایم به مثلثات اختصاص داشت و آرام‌آرام فرمول‌ها را در آن نوشتم. وقتی کل مثلثات تمام شد (شاید حتی یک یا ۲ ماه طول بکشد)، خلاصه‌ام نیز تمام شد و مرتبه‌های بعد فرمول‌های مهم را از خلاصه‌ام می‌خواندم و تست کلی از تمام مباحث مثلثات و به‌صورت زمان‌دار می‌زدم و سعی می‌کردم سرعت و دقت خود را افزایش دهم.

پس توجه کنید که:

۱) مثلثات را باید آهسته و پیوسته بخوانید و خلاصه‌ی خود را آرام‌آرام تکمیل کنید.

۲) پس از تمام شدن مطالعه‌ی مثلثات و تکمیل خلاصه، هر بار که می‌خواهید مرور کنید،‌ خلاصه را بخوانید و فرمول‌ها را به یاد آورید و ۲، ۳ روز بعد تست جامع بزنید.

۳) در زمان تست زدن، اگر به نکته‌ یا فرمول جدید و جالبی برخورد کردید و به نظرتان دانستن آن مفید است، در خلاصه‌‌ی خود وارد کنید.

برای دریافت جزوه ریاضی فرمول های مثلثات  فایل زیر را دانلود کنید.


دانلود با لینک مستقیم


فرمول های مثلثات